Professional Education

  • Ph.D., CSIR-Indian Institute of Chemical Biology, Biochemistry (2019)
  • Master of Science (M.Sc.), University of Calcutta, Microbiology (2012)
  • Bachelor of Science (B.Sc.), University of Calcutta, Microbiology (2010)

Stanford Advisors

All Publications

  • A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation. eLife Vides, E. G., Adhikari, A., Chiang, C. Y., Lis, P., Purlyte, E., Limouse, C., Shumate, J. L., Spinola-Lasso, E., Dhekne, H. S., Alessi, D. R., Pfeffer, S. R. 2022; 11


    Activating mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) cause Parkinson's disease and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'Site #1', can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'Site #2', that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.

    View details for DOI 10.7554/eLife.79771

    View details for PubMedID 36149401