Bio


Ayla joined Geological Sciences as an Assistant Professor in Fall 2019. In 2006, she received her B.S. in Geophysical Sciences and a minor in Near Eastern Languages and Civilizations at the University of Chicago. She then spent a year in Turkey as a Fulbright Scholar studying geoarchaeology and as a research assistant continuing her undergraduate research on supereruptions at the University of Chicago. From 2008-2014, she attended graduate school in the Department of Earth and Environmental Sciences at Vanderbilt University, where she studied the evolution and eruption of supereruptive magmas. She was awarded her M.S. and Ph.D. degrees in 2010 and 2014, respectively. Since then, she has continued to expand her research into new areas as a postdoctoral scholar at Brown University, studying magmas using high-temperature and high-pressure experiments, as a Harry Hess Postdoctoral Fellow at Princeton University, studying links between extrusive and intrusive magmas using zircon geochronology, and as a postdoctoral investigator at the Woods Hole Oceanograhic Institution, studying ascent rates of Antarctic basanites using diffusive water loss from olivine-hosted melt inclusions.

Academic Appointments


Honors & Awards


  • Harry Hess Postdoctoral Fellowship, Princeton University (2015-2017)
  • Teaching Certificate, Vanderbilt University Center for Teaching (2010)
  • Teaching-As-Research (TAR) Fellowship, Vanderbilt University Center for Teaching (2009)
  • Fulbright Scholar (Turkey), Fulbright (2006)
  • REU, American Museum of Natural History (2005)
  • Foreign Language Acquisition Grant, University of Chicago (2004)

Professional Education


  • Ph.D., Vanderbilt University, Earth and Environmental Sciences (2014)
  • M.S., Vanderbilt University, Earth and Environmental Sciences (2010)
  • B.S., University of Chicago, Geophysical Sciences (2006)
  • Minor, University of Chicago, Near Eastern Languages and Civilizations (2006)

Current Research and Scholarly Interests


I have long been fascinated by magmas and volcanic eruptions, for reasons ranging from purely academic (trying to understand the magmatic construction of Earth’s crust) to purely practical (developing effective monitoring and mitigation strategies for volcanic eruptions). Consequently, my research revolves around understanding how, when, where, and why magmas are stored, evolve, and ultimately do (or do not!) erupt.

Within this context, I focus on two main themes: (1) the temporal, chemical, and physical, evolution of magmas, and (2) the interplay between magma storage conditions in the crust and magmatic processes. I employ a multi-faceted approach to explore these topics, integrating data from multiple scales and perspectives; my studies capitalize on information contained in field relations, crystal and melt inclusion textures (sizes, shapes, positions), crystal and volcanic glass geochemistry, geochronology, phase-equilibria and numerical modeling, and experiments. As a function of this approach, I am also engaged in the development of novel methods to address petrologic problems in new, better, and more refined ways than is currently possible.

A major focus of my research has been on supereruptions – gigantic explosive eruptions the likes of which we have never seen in recorded human history – but I am continually exploring other kinds of magmatic systems. I am currently particularly interested in the links (or lack thereof) between extrusive (i.e., erupted) and intrusive (i.e., unerupted) magmas, similarities/differences between large- and small-volume eruptions, and similarities/differences between magmas generated at different levels of the crust. I have also had a longstanding interest in the interactions and relationships between humans and their geologic surroundings (particularly volcanoes).

2019-20 Courses


Stanford Advisees


  • Doctoral Dissertation Reader (AC)
    Kate Coppess
  • Doctoral (Program)
    Sarah Hickernell

All Publications


  • Magma residence and eruption at the Taupo Volcanic Center (Taupo Volcanic Zone, New Zealand): insights from rhyolite-MELTS geobarometry, diffusion chronometry, and crystal textures CONTRIBUTIONS TO MINERALOGY AND PETROLOGY Pamukcu, A. S., Wright, K. A., Gualda, G. R., Gravley, D. 2020; 175 (5)
  • Rhyolite-MELTS vs. DERP – Newer Does Not Make it Better: a Comment on “The Effect of Anorthite Content and Water on Quartz–Feldspar Cotectic Compositions in the Rhyolitic System and Implications for Geobarometry” by Wilke et al. (2017; Journal of Petrology, 58, No. 4, 789–818) JOURNAL OF PETROLOGY Gualda, G. R., Begue, F., Pamukcu, A. S., Ghiorso, M. S. 2019

    View details for DOI 10.1093/petrology/egz003

  • Climbing the crustal ladder: Magma storage-depth evolution during a volcanic flare-up SCIENCE ADVANCES Gualda, G. R., Grayley, D. M., Connor, M., Hollmann, B., Pamukcu, A. S., Begue, F., Ghiorso, M. S., Deering, C. D. 2018; 4 (10): eaap7567

    Abstract

    Very large eruptions (>50 km3) and supereruptions (>450 km3) reveal Earth's capacity to produce and store enormous quantities (>1000 km3) of crystal-poor, eruptible magma in the shallow crust. We explore the interplay between crustal evolution and volcanism during a volcanic flare-up in the Taupo Volcanic Zone (TVZ, New Zealand) using a combination of quartz-feldspar-melt equilibration pressures and time scales of quartz crystallization. Over the course of the flare-up, crystallization depths became progressively shallower, showing the gradual conditioning of the crust. Yet, quartz crystallization times were invariably very short (<100 years), demonstrating that very large reservoirs of eruptible magma were transient crustal features. We conclude that the dynamic nature of the TVZ crust favored magma eruption over storage. Episodic tapping of eruptible magmas likely prevented a supereruption. Instead, multiple very large bodies of eruptible magma were assembled and erupted in decadal time scales.

    View details for DOI 10.1126/sciadv.aap7567

    View details for Web of Science ID 000449221200003

    View details for PubMedID 30324132

    View details for PubMedCentralID PMC6179376

  • High-Ti, bright-CL rims in volcanic quartz: a result of very rapid growth CONTRIBUTIONS TO MINERALOGY AND PETROLOGY Pamukcu, A. S., Ghiorso, M. S., Gualda, G. R. 2016; 171 (12)
  • Melt inclusion shapes: Timekeepers of short-lived giant magma bodies GEOLOGY Pamukcu, A. S., Gualda, G. R., Begue, F., Gravley, D. M. 2015; 43 (11): 947–50

    View details for DOI 10.1130/G37021.1

    View details for Web of Science ID 000364057700005

  • Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS-Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA) CONTRIBUTIONS TO MINERALOGY AND PETROLOGY Pamukcu, A. S., Gualda, G. R., Ghiorso, M. S., Miller, C. F., McCracken, R. G. 2015; 169 (3)
  • Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 2: application to Taupo Volcanic Zone rhyolites CONTRIBUTIONS TO MINERALOGY AND PETROLOGY Begue, F., Gualda, G. R., Ghiorso, M. S., Pamukcu, A. S., Kennedy, B. M., Gravley, D. M., Deering, C. D., Chambefort, I. 2014; 168 (5)
  • Quantitative 3D petrography using X-ray tomography 4: Assessing glass inclusion textures with propagation phase-contrast tomography GEOSPHERE Pamukcu, A. S., Gualda, G. R., Rivers, M. L. 2013; 9 (6): 1704–13

    View details for DOI 10.1130/GES00915.1

    View details for Web of Science ID 000328506400012

  • The Evolution of the Peach Spring Giant Magma Body: Evidence from Accessory Mineral Textures and Compositions, Bulk Pumice and Glass Geochemistry, and Rhyolite-MELTS Modeling JOURNAL OF PETROLOGY Pamukcu, A. S., Carley, T. L., Gualda, G. R., Miller, C. F., Ferguson, C. A. 2013; 54 (6): 1109–48
  • Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body PLOS ONE Gualda, G. R., Pamukcu, A. S., Ghiorso, M. S., Anderson, A. T., Sutton, S. R., Rivers, M. L. 2012; 7 (5): e37492

    Abstract

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

    View details for DOI 10.1371/journal.pone.0037492

    View details for Web of Science ID 000305353400028

    View details for PubMedID 22666359

    View details for PubMedCentralID PMC3364253

  • Crystallization Stages of the Bishop Tuff Magma Body Recorded in Crystal Textures in Pumice Clasts JOURNAL OF PETROLOGY Pamukcu, A. S., Gualda, G. R., Anderson, A. T. 2012; 53 (3): 589–609
  • Quantitative 3D petrography using X-ray tomography 2: Combining information at various resolutions GEOSPHERE Pamukcu, A. S., Gualda, G. R. 2010; 6 (6): 775–81

    View details for DOI 10.1130/GES00565.1

    View details for Web of Science ID 000285142400004

  • Quantitative 3D petrography using X-ray tomography 3: Documenting accessory phases with differential absorption tomography GEOSPHERE Gualda, G. R., Pamukcu, A. S., Claiborne, L. L., Rivers, M. L. 2010; 6 (6): 782–92

    View details for DOI 10.1130/GES00568.1

    View details for Web of Science ID 000285142400005