Clinical Focus

  • Cardiovascular Disease
  • Cardiovascular Imaging

Academic Appointments

Professional Education

  • Fellowship:Stanford University School of Medicine (1990) CA
  • Residency:Stanford University School of Medicine (1987) CA
  • Internship:Stanford University School of Medicine (1985) CA
  • Medical Education:Stanford University School of Medicine (1984) CA
  • Board Certification: Cardiovascular Disease, American Board of Internal Medicine (1989)
  • Board Certification: Internal Medicine, American Board of Internal Medicine (1988)

Current Research and Scholarly Interests

Cardiac Imaging, vascular imaging

Journal Articles

  • Off-Resonance-Robust Velocity-Selective Magnetization Preparation for Non-Contrast-Enhanced Peripheral MR Angiography MAGNETIC RESONANCE IN MEDICINE Shin, T., Hu, B. S., Nishimura, D. G. 2013; 70 (5): 1229-1240


    PURPOSE: To develop a new velocity-selective (VS) excitation pulse sequence which is robust to field inhomogeneity, and demonstrate its application to non-contrast-enhanced peripheral MR angiography (MRA). METHODS: The off-resonance-robust VS saturation pulse is designed by incorporating 180° refocusing pulses into the k-space-based reference design and tailoring sequence parameters in a velocity region of interest. The VS saturation pulse is used as magnetization preparation for non-contrast-enhanced peripheral MRA to suppress background tissues but not arterial blood based on their velocities. Non-contrast-enhanced peripheral MRA using the proposed VS preparation was tested in healthy volunteers and a patient with arterial stenosis. RESULTS: Calf angiograms obtained using the new VS preparation show more uniform background suppression than the reference VS preparation, as demonstrated by larger mean values and smaller standard deviations of artery-to-vein and artery-to-muscle contrast-to-noise ratios (71.0 ± 11.4 and 75.3 ± 12.1 versus 61.7 ± 22.7 and 58.5 ± 27.8). Two-station peripheral MRA using the new VS preparation identifies stenosis of the femoral and popliteal arteries in the patient, as validated by digital subtraction angiography. CONCLUSION: Non-contrast-enhanced MRA using the new VS magnetization preparation can reliably provide high angiographic contrast in the lower extremities with significantly improved immunity to field inhomogeneity. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.

    View details for DOI 10.1002/mrm.24561

    View details for Web of Science ID 000326115000006

    View details for PubMedID 23192893

  • In Vivo High-Resolution Magnetic Resonance Skin Imaging at 1.5 T and 3 T MAGNETIC RESONANCE IN MEDICINE Barral, J. K., Bangerter, N. K., Hu, B. S., Nishimura, D. G. 2010; 63 (3): 790-796


    As a noninvasive modality, MR is attractive for in vivo skin imaging. Its unique soft tissue contrast makes it an ideal imaging modality to study the skin water content and to resolve the different skin layers. In this work, the challenges of in vivo high-resolution skin imaging are addressed. Three 3D Cartesian sequences are customized to achieve high-resolution imaging and their respective performance is evaluated. The balanced steady-state free precession (bSSFP) and gradient echo (GRE) sequences are fast but can be sensitive to off-resonance artifacts. The fast large-angle spin echo (FLASE) sequence provides a sharp depiction of the hypodermis structures but results in more specific absorption rate (SAR). The effect of increasing the field strength is assessed. As compared to 1.5 T, signal-to-noise ratio at 3 T slightly increases in the hypodermis and almost doubles in the dermis. The need for fat/water separation is acknowledged and a solution using an interleaved three-point Dixon method and an iterative reconstruction is shown to be effective. The effects of motion are analyzed and two techniques to prevent motion and correct for it are evaluated. Images with 117 x 117 x 500 microm(3) resolution are obtained in imaging times under 6 min.

    View details for DOI 10.1002/mrm.22271

    View details for Web of Science ID 000274938000029

    View details for PubMedID 20146351

  • Single breath-hold whole-heart MRA using variable-density spirals at 3T MAGNETIC RESONANCE IN MEDICINE Santos, J. M., Cunningham, C. H., Lustig, M., Hargreaves, B. A., Hu, B. S., Nishimura, D. G., Pauly, J. M. 2006; 55 (2): 371-379


    Multislice breath-held coronary imaging techniques conventionally lack the coverage of free-breathing 3D acquisitions but use a considerably shorter acquisition window during the cardiac cycle. This produces images with significantly less motion artifact but a lower signal-to-noise ratio (SNR). By using the extra SNR available at 3 T and undersampling k-space without introducing significant aliasing artifacts, we were able to acquire high-resolution fat-suppressed images of the whole heart in 17 heartbeats (a single breath-hold). The basic pulse sequence consists of a spectral-spatial excitation followed by a variable-density spiral readout. This is combined with real-time localization and a real-time prospective shim correction. Images are reconstructed with the use of gridding, and advanced techniques are used to reduce aliasing artifacts.

    View details for DOI 10.1002/mrm.20765

    View details for Web of Science ID 000235326500019

    View details for PubMedID 16408262

  • Real-time color-flow CMR in adults with congenital heart disease JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE de la Pena, E., Nguyen, P. K., Nayak, K. S., Yang, P. C., Rosenthal, D. N., Hu, B. S., Pauly, J. M., McConnell, M. V. 2006; 8 (6): 809-815


    CMR is valuable in the evaluation of congenital heart disease (CHD). Traditional flow imaging sequences involve cardiac and respiratory gating, increasing scan time and susceptibility to arrhythmias. We studied a real-time color-flow CMR system for the detection of flow abnormalities in 13 adults with CHD. All 16 congenital flow abnormalities previously detected by echocardiography were visualized using color-flow CMR, including atrial septal defects (n = 4), ventricular septal defects (n = 9), aortic coarctation (n = 1), Blalock-Taussig shunt (n = 1) and Fontan shunt (n = 1). Real-time color-flow CMR can identify intra- and extra-cardiac flow abnormalities in adults with congenital heart disease.

    View details for DOI 10.1080/10976640600777728

    View details for Web of Science ID 000241485600007

    View details for PubMedID 17060103

  • High-resolution real-time spiral MRI for guiding vascular interventions in a rabbit model at 1.5 T. Journal of magnetic resonance imaging : JMRI Terashima, M., Hyon, M., de la Pena-Almaguer, E., Yang, P. C., Hu, B. S., Nayak, K. S., Pauly, J. M., McConnell, M. V. 2005; 22 (5): 687-690


    To study the feasibility of a combined high spatial and temporal resolution real-time spiral MRI sequence for guiding coronary-sized vascular interventions.Eight New Zealand White rabbits (four normal and four with a surgically-created stenosis in the abdominal aorta) were studied. A real-time interactive spiral MRI sequence combining 1.1 x 1.1 mm(2) in-plane resolution and 189-msec total image acquisition time was used to image all phases of an interventional procedure (i.e., guidewire placement, balloon angioplasty, and stenting) in the rabbit aorta using coronary-sized devices on a 1.5 T MRI system.Real-time spiral MRI identified all rabbit aortic stenoses and provided high-temporal-resolution visualization of guide-wires crossing the stenoses in all animals. Angioplasty balloon dilatation and deployment of coronary-sized copper stents in the rabbit aorta were also successfully imaged by real-time spiral MRI.Combining high spatial and temporal resolution with spiral MRI allows real-time MR-guided vascular intervention using coronary-sized devices in a rabbit model. This is a promising approach for guiding coronary interventions.

    View details for PubMedID 16217745

  • Variable-density one-shot Fourier velocity encoding MAGNETIC RESONANCE IN MEDICINE DiCarlo, J. C., Hargreaves, B. A., Nayak, K. S., Hu, B. S., Pauly, J. M., Nishimura, D. G. 2005; 54 (3): 645-655


    In areas of highly pulsatile and turbulent flow, real-time imaging with high temporal, spatial, and velocity resolution is essential. The use of 1D Fourier velocity encoding (FVE) was previously demonstrated for velocity measurement in real time, with fewer effects resulting from off-resonance. The application of variable-density sampling is proposed to improve velocity measurement without a significant increase in readout time or the addition of aliasing artifacts. Two sequence comparisons are presented to improve velocity resolution or increase the velocity field of view (FOV) to unambiguously measure velocities up to 5 m/s without aliasing. The results from a tube flow phantom, a stenosis phantom, and healthy volunteers are presented, along with a comparison of measurements using Doppler ultrasound (US). The studies confirm that variable-density acquisition of kz-kv space improves the velocity resolution and FOV of such data, with the greatest impact on the improvement of FOV to include velocities in stenotic ranges.

    View details for DOI 10.1002/mrm.20594

    View details for Web of Science ID 000231494000016

    View details for PubMedID 16088883

  • Spiral balanced steady-state free precession cardiac imaging MAGNETIC RESONANCE IN MEDICINE Nayak, K. S., Hargreaves, B. A., Hu, B. S., Nishimura, D. G., Pauly, J. M., Meyer, C. H. 2005; 53 (6): 1468-1473


    Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood.

    View details for DOI 10.1002/mrm.20489

    View details for Web of Science ID 000229468200031

    View details for PubMedID 15906302

  • Noninvasive assessment of coronary vasodilation using magnetic resonance angiography JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Terashima, M., Meyer, C. H., Keeffe, B. G., Putz, E. J., De La Pena-Almaguer, E., Yang, P. C., Hu, B. S., Nishimura, D. G., McConnell, M. V. 2005; 45 (1): 104-110


    The purpose of this study was to investigate the use of coronary magnetic resonance angiography (MRA) for assessing human epicardial coronary artery vasodilation.Coronary vasodilation plays a vital role in the human coronary circulation. Previous studies of epicardial coronary vasodilation have used invasive coronary angiography. Coronary MRA may provide an alternative noninvasive method to directly assess changes in coronary size.Thirty-two subjects were studied: 12 patients (age 55 +/- 18 years) and 20 healthy subjects (age 34 +/- 4 years). High-resolution multi-slice spiral coronary MRA (in-plane resolution of 0.52 to 0.75 mm) was performed before and after sublingual nitroglycerin (NTG). Quantitative analysis of coronary vasodilation was performed on cross-sectional images of the right coronary artery (RCA). A time-course analysis of coronary vasodilation was performed in a subset of eight subjects for 30 min after NTG. Signal-to-noise ratio was also measured on the in-plane RCA images.Coronary MRA demonstrated a 23% increase in cross-sectional area after NTG (16.9 +/- 7.8 mm2 to 20.8 +/- 8.9 mm2, p <0.0001), with significant vasodilation between 3 and 15 min after NTG on time-course analysis. The MRA measurements had low interobserver variability (< or =5%) and good correlation with X-ray angiography (r=0.98). The magnitude of vasodilation correlated with baseline cross-sectional area (r=0.52, p=0.03) and age (r=0.40, p=0.019). Post-NTG images also demonstrated a 31% improvement in coronary signal-to-noise ratio (p = 0.002).Nitroglycerin-enhanced coronary MRA can noninvasively measure coronary artery vasodilation and is a promising noninvasive technique to study coronary vasomotor function.

    View details for DOI 10.1016/j.jacc.2004.09.057

    View details for Web of Science ID 000226012600020

    View details for PubMedID 15629383

  • Developmental endothelial locus-1 (Del-1), a novel angiogenic protein - Its role in ischemia CIRCULATION Ho, H. K., Jang, J. J., Kaji, S., Spektor, G., Fong, A., Yang, P., Hu, B. S., Schatzman, R., Quertermous, T., Cooke, J. P. 2004; 109 (10): 1314-1319


    Developmentally regulated endothelial locus-1 (Del-1) is an extracellular matrix protein that is expressed by endothelial cells during embryological vascular development. We speculated that Del-1 may be reexpressed in ischemia and may be involved in endogenous angiogenesis.Del-1 protein was detected by immunohistochemistry in murine ischemic hindlimb after femoral artery excision. To determine whether exogenous Del-1 would augment angiogenesis in vivo, Del-1 or vehicle was administered for 3 weeks by intramuscular injection of murine ischemic hindlimbs. Angiogenesis was quantified by gadolinium-MRI perfusion and capillary densitometry. We used a disc angiogenesis system (DAS) to characterize the angiogenic response to vehicle (PBS), Del-1, Del-1 mutant (altered RGD domain), Del-1 minor (truncated discoidin-I-like domain), or basic fibroblast growth factor. After 14 days, the discs were extracted and sectioned to quantify vascular growth by morphometry. Endogenous Del-1 protein expression was increased in ischemic hindlimbs. Administration of Del-1 increased hindlimb vascular flow index and capillary density. In the DAS, Del-1 doubled fibrovascular growth, as did basic fibroblast growth factor. However, angiogenesis was not enhanced by the Del-1 mutant or Del-1 minor proteins.Del-1 is expressed in ischemic tissue. Del-1 stimulates angiogenesis, an effect that is dependent on the RGD motif and a second signaling sequence in the discoidin-I-like domain. Exogenous intramuscular administration of Del-1 significantly enhances angiogenesis in the murine ischemic hindlimb. Del-1 may prove to be a novel therapeutic agent for patients with ischemia.

    View details for DOI 10.1161/01.CIR.0000118465.36018.2D

    View details for Web of Science ID 000220213600020

    View details for PubMedID 14981004

  • Dynamic real-time architecture in magnetic resonance coronary angiography-a prospective clinical trial JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE Yang, P. C., Santos, J. M., Nguyen, P. K., Scott, G. C., Engvall, J., McConnell, M. V., Wright, G. A., Nishimura, D. G., Pauly, J. M., Hu, B. S. 2004; 6 (4): 885-894


    A dynamic real-time (dRT) architecture has been developed to address limitations in magnetic resonance coronary angiography (MRCA). A prospective clinical trial of 45 patients suspected of coronary artery disease was conducted to determine clinical utility of this integrated real-time system.Clinical implementation of MRCA is not performed routinely today. However, improved anatomic coverage, image quality, and scan flexibility may enhance its clinical utility. A novel real-time architecture addresses these challenges through instantaneous reconfiguration between real-time (RT) and high-resolution (HR) imaging sequences with dynamic selection of the desired element on a custom-designed receiver coil.A total of 45 subjects were recruited consecutively to evaluate scan time, anatomic coverage, image quality, and detection of coronary lesions. Using a modern PC, the dRT switches from RT to gated HR imaging sequence in one repetition time (39 ms). Magnetic resonance imaging (MRI) scanning was performed using a custom-designed coronary coil consisting of two four-inch phase-array circular elements enabled with real-time selection of the desired coil element.All studies were completed in less than 45 minutes and required a mean of 12 breath holds (16 heartbeats). Of the total number of coronary segments, 91% (357/394) were visualized. Excellent or good image quality was achieved in 86% of the segments. Blinded analysis of the coronary arteries revealed sensitivity of 93% and specificity of 88% in the detection of coronary stenoses.The integrated environment of dRT provides a rapid and flexible scan protocol for MRCA while achieving wide anatomical coverage, high image quality, and reliable detection of coronary stenosis in short scan time.

    View details for DOI 10.1016/j.JCMR.20036192

    View details for Web of Science ID 000226039200015

    View details for PubMedID 15646892

  • Fast 3D imaging using variable-density spiral trajectories with applications to limb perfusion MAGNETIC RESONANCE IN MEDICINE Lee, J. H., Hargreaves, B. A., Hu, B. S., Nishimura, D. G. 2003; 50 (6): 1276-1285


    Variable-density k-space sampling using a stack-of-spirals trajectory is proposed for ultra fast 3D imaging. Since most of the energy of an image is concentrated near the k-space origin, a variable-density k-space sampling method can be used to reduce the sampling density in the outer portion of k-space. This significantly reduces scan time while introducing only minor aliasing artifacts from the low-energy, high-spatial-frequency components. A stack-of-spirals trajectory allows control over the density variations in both the k(x)-k(y) plane and the k(z) direction while fast k-space coverage is provided by spiral trajectories in the k(x)-k(y) plane. A variable-density stack-of-spirals trajectory consists of variable-density spirals in each k(x)-k(y) plane that are located in varying density in the k(z) direction. Phantom experiments demonstrate that reasonable image quality is preserved with approximately half the scan time. This technique was then applied to first-pass perfusion imaging of the lower extremities which demands very rapid volume coverage. Using a variable-density stack-of-spirals trajectory, 3D images were acquired at a temporal resolution of 2.8 sec over a large volume with a 2.5 x 2.5 x 8 mm(3) spatial resolution. These images were used to resolve the time-course of muscle intensity following contrast injection.

    View details for DOI 10.1002/mrm.10644

    View details for Web of Science ID 000186991500019

    View details for PubMedID 14648576

  • Steady-state sequence synthesis and its application to efficient fat-suppressed imaging MAGNETIC RESONANCE IN MEDICINE Overall, W. R., Nishimura, D. G., Hu, B. S. 2003; 50 (3): 550-559


    A new synthesis algorithm, based on the Shinnar-Le Roux (SLR) transform, can be used to generate fully refocused steady-state pulse sequences with arbitrary magnetization profiles as a function of off-resonant precession. This is accomplished by appropriate periodic oscillation of the RF excitation magnitude and phase from echo to echo. The technique is applied to the design of refocused steady-state free precession (SSFP) sequences with flat profiles, providing the opportunity for banding-artifact-free imaging with steady-state contrast. The algorithm is also used to generate refocused-SSFP sequences with an arbitrarily broad region of attenuated signal. These sequences are implemented and applied to the problem of steady-state fat suppression. Preliminary results show signal levels that agree well with theory, and a broad region of suppressed signal at each echo. Total imaging time is kept identical to that of a standard refocused-SSFP experiment through echo equalization and interleaving. 3D images from the leg of a normal volunteer acquired in 44 s demonstrate the applicability of the technique to fat-suppressed imaging.

    View details for DOI 10.1002/mrm.10542

    View details for Web of Science ID 000185174500014

    View details for PubMedID 12939763

  • Rapid quantitation of high-speed flow jets MAGNETIC RESONANCE IN MEDICINE Nayak, K. S., Hu, B. S., Nishimura, D. G. 2003; 50 (2): 366-372


    Flow jets containing velocities up to 5-7 m/s are common in patients with congenital defects and patients with valvular disease (stenosis and regurgitation). The quantitation of peak velocity and flow volume in these jets is clinically significant but requires specialized imaging sequences. Conventional 2DFT phase contrast sequences require lengthy acquisitions on the order of several minutes. Conventional spiral phase contrast sequences are faster, but are highly corrupted by flow artifacts at these high velocities due to phase dispersion and motion during the excitation and readout. A new prospectively gated method based on spiral phase contrast is presented, which has a sufficiently short measurement interval (<4 ms) to minimize flow artifacts, while achieving high spatial resolution (2 x 2 x 4 mm(3)) to minimize partial volume effects, all within a single breathhold. A complete single-slice phase contrast movie loop with 22 ms true temporal resolution is acquired in one 10-heartbeat breathhold. Simulations indicate that this technique is capable of imaging through-plane jets with velocities up to 10 m/s, and initial studies in aortic stenosis patients show accurate in vivo measurement of peak velocities up to 4.2 m/s (using echocardiography as a reference).

    View details for DOI 10.1002/mrm.10538

    View details for Web of Science ID 000184529300017

    View details for PubMedID 12876713

  • Fat-suppressed steady-state free precession imaging using phase detection MAGNETIC RESONANCE IN MEDICINE Hargreaves, B. A., Vasanawala, S. S., Nayak, K. S., Hu, B. S., Nishimura, D. G. 2003; 50 (1): 210-213


    Fully refocused steady-state free precession (SSFP) is a rapid, efficient imaging sequence that can provide diagnostically useful image contrast. In SSFP, the signal is refocused midway between excitation pulses, much like in a spin-echo experiment. However, in SSFP, the phase of the refocused spins alternates for each resonant frequency interval equal to the reciprocal of the sequence repetition time (TR). Appropriate selection of the TR results in a 180 degrees phase difference between lipid and water signals. This phase difference can be used for fat-water separation in SSFP without any increase in scan time. The technique is shown to produce excellent non-contrast-enhanced, flow-independent angiograms of the peripheral vasculature.

    View details for DOI 10.1002/mrm.10488

    View details for Web of Science ID 000183961800028

    View details for PubMedID 12815698

  • Spiral magnetic resonance coronary angiography with rapid real-time localization JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Yang, P. C., Meyer, C. H., Terashima, M., Kaji, S., McConnell, M. V., Macovski, A., Pauly, J. M., Nishimura, D. G., Hu, B. S. 2003; 41 (7): 1134-1141


    A spiral high-resolution coronary artery imaging sequence (SH) interfaced with real-time localization system (RT) has been developed. A clinical study of 40 patients suspected of coronary artery disease (CAD) was conducted. Segmented k-space acquisition techniques have dominated magnetic resonance coronary angiography (MRCA) over the last decade. Although a recent multicenter trial using this technique demonstrated encouraging results, the technique was hampered by low specificity. Spiral k-space acquisition had demonstrated several advantages for MRCA. Therefore, a first clinical trial implementing spiral high-resolution coronary imaging sequence with real-time localization (SH-RT) was performed.A clinical study of 40 patients suspected of CAD undergoing X-ray angiography was conducted to analyze the clinical reliability of this novel imaging system. The SH-RT had been designed to exploit the unique capability of two imaging sequences. The RT allowed a rapid localization of the coronary arteries. Then SH achieved multislice acquisition during a short breath-hold with submillimeter resolution. The MRCA data were analyzed for scan time, anatomic coverage, image quality, and accuracy in detecting CAD. In 40 subjects, SH achieved 0.7 to 0.9 mm resolution with 14-heartbeat breath-holds. Excellent or good image quality was achieved in 78% (263/337) of the coronary segments. Blinded consensus reading among three observers generated sensitivity of 76% and specificity of 91% in the detection of CAD compared with X-ray angiography. The MRCA imaging sequence implementing a novel spiral k-space acquisition technique enabled rapid and reliable imaging of the CAD in submillimeter resolution with short breath-holds.

    View details for DOI 10.1016/S0735-1097(03)00079-2

    View details for Web of Science ID 000181968900011

    View details for PubMedID 12679213

  • Triggered real-time MRI and cardiac applications MAGNETIC RESONANCE IN MEDICINE Nayak, K. S., Hu, B. S. 2003; 49 (1): 188-192


    Real-time interactive MRI is becoming the method of choice for many cardiac applications. One current limitation of real-time techniques is inaccurate slice registration during free-breathing. A simple "triggered real-time" imaging approach is proposed which enables the acquisition of synchronized and accurately registered real-time movie loops during short breathholds. Initial in vivo results demonstrate application to complete 4D ventricular function assessment and fully resolved flow imaging.

    View details for DOI 10.1002/mrm.10341

    View details for Web of Science ID 000180148100025

    View details for PubMedID 12509837

  • Magnetic resonance coronary angiography. Current cardiology reports Yang, P. C., McConnell, M. V., Nishimura, D. G., Hu, B. S. 2003; 5 (1): 55-62


    Magnetic resonance coronary angiography (MRCA) has witnessed tremendous technical advances over the past decade. Although high-quality images of the coronary arteries have been demonstrated, this imaging modality is not performed routinely today. The fundamental properties of the coronary arteries deterring noninvasive imaging are well known. This article provides an overview of the developmental efforts to overcome these challenges, and highlights key technical and clinical advances. The future prospect of MRCA depends on clinical implementation of the technique. In order to meet this challenge, the following issues must be addressed: contrast- and signal-to-noise ratio, temporal and spatial resolution, and scan protocol.

    View details for PubMedID 12493161

  • Fast phase-contrast velocity measurement in the steady state MAGNETIC RESONANCE IN MEDICINE Overall, W. R., Nishimura, D. G., Hu, B. S. 2002; 48 (5): 890-898


    A new method of encoding flow velocity as image phase in a refocused steady-state free precession (SSFP) sequence, called steady-state phase contrast (SSPC), can be used to generate velocity images rapidly while retaining high signal. Magnitude images with refocused-SSFP contrast are simultaneously acquired. This technique is compared with the standard method of RF-spoiled phase contrast (PC), and is found to have more than double the phase-signal to phase-noise ratio (PNR) when compared with standard PC at reasonable repetition intervals (TRs). As TR decreases, this advantage increases exponentially, facilitating rapid scans with high PNR efficiency. Rapid switching between the two necessary steady states can be accomplished by the insertion of a single TR interval with no flow-encoding gradient. The technique is implemented in a 2DFT sequence and validated in a phantom study. Preliminary results indicate that further TR reduction may be necessary for high-quality cardiac images; however, images in more stationary structures, such as the descending aorta and carotid bifurcation, exhibit good signal-to-noise ratio (SNR) and PNR. Comparisons with standard-PC images verify the PNR advantage predicted by theory.

    View details for DOI 10.1002/mrm.10285

    View details for Web of Science ID 000179055200018

    View details for PubMedID 12418005

  • Oscillating dual-equilibrium steady-state angiography MAGNETIC RESONANCE IN MEDICINE Overall, W. R., Conolly, S. M., Nishimura, D. G., Hu, B. S. 2002; 47 (3): 513-522


    A novel technique of generating noncontrast angiograms is presented. This method, called oscillating dual-equilibrium steady-state angiography (ODESSA), utilizes a modified steady-state free precession (SSFP) pulse sequence. The SSFP sequence is modified such that flowing material reaches a steady state which oscillates between two equilibrium values, while stationary material attains a single, nonoscillatory steady state. Subtraction of adjacent echoes results in large, uniform signal from all flowing spins and zero signal from stationary spins. Venous signal can be suppressed based on its reduced T2. ODESSA arterial signal is more than three times larger than that of traditional phase-contrast angiography (PCA) in the same scan time, and also compares favorably with other techniques of MR angiography (MRA). Pulse sequences are implemented in 2D, 3D, and volumetric-projection modes. Angiograms of the lower leg, generated in as few as 5 s, show high arterial signal-to-noise ratio (SNR) and full suppression of other tissues.

    View details for DOI 10.1002/mrm.10070

    View details for Web of Science ID 000174127500012

    View details for PubMedID 11870838

  • In vivo real-time intravascular MRI JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE Rivas, P. A., Nayak, K. S., Scott, G. C., McConnell, M. V., Kerr, A. B., Nishimura, D. G., Pauly, J. M., Hu, B. S. 2002; 4 (2): 223-232


    The Magnetic resonance imaging (MRI) is an emerging technology for catheter-based imaging and interventions. Real-time MRI is a promising methodfor overcoming catheter and physiologic motion for intravascular imaging.All imaging was performed on a 1.5 T Signa MRI scanner with high-speed gradients. Multiple catheter coils were designed and constructed, including low-profile, stub-matched coils. Coil sensitivity patterns and SNR measurements were compared. Real-time imaging was performed with an interleaved spiral sequence using a dedicated workstation, providing real-time data acquisition, image reconstruction and interactive control and display. Real-time "black-blood" imaging was achieved through incorporation of off-slice saturation pulses. The imaging sequence was tested in a continuous flow phantom and then in vivo in the rabbit aorta using a 2 mm catheter coil.The real-time intravascular imaging sequence achieved 120-440 micron resolution at up to 16 frames per second. Low-profile stub-tuned catheter coils achieved similar SNR to larger traditional coil designs. In the phantom experiments, addition of real-time black-blood saturation pulses effectively suppressed the flow signal and allowed visualization of the phantom wall. In vivo experiments clearly showed real-time intravascular imaging of the rabbit aortic wall with minimal motion artifacts and effective blood signal suppression.Real-time imaging with low-profile coil designs provides significant enhancements to intravascular MRI.

    View details for Web of Science ID 000176057200005

    View details for PubMedID 12074137

  • Rapid assessment of cardiac anatomy and function with a new hand-carried ultrasound device (OptiGo): a comparison with standard echocardiography. European journal of echocardiography Rugolotto, M., Hu, B. S., Liang, D. H., Schnittger, I. 2001; 2 (4): 262-269


    The aim of this study was to evaluate image quality and accuracy of a new hand-carried ultrasound device, OptiGo (Agilent Technologies) when compared to standard echocardiography in the setting of a focused examination in the assessment of cardiac anatomy and function.One-hundred and twenty-one patients were prospectively enrolled. Image quality and accuracy in assessment of chamber sizes, left ventricular (LV) wall thickness and contractility, right ventricular (RV) function, mitral and aortic leaflet thickening, mitral annular calcification, pericardial effusion and valvular regurgitation were assessed. Two-dimensional (2D) findings were graded on a four-point scale, except for LV function (six-point) and valvular leaflet opening (two-point). Colour Doppler assessment of valvular regurgitation was graded on a seven-point scale. A one-point difference was considered minor; a two or more point difference was considered major. There was no statistically significant difference in image quality between the two devices. For 2D data, the number of total (minor and major) differences between the hand-carried and standard echocardiograph examinations was significantly greater than the inter-observer variability (14.3% vs 10.7%, P< 0.05), however, major differences alone were not statistically different. For the colour Doppler assessment of regurgitation there was a significant difference between the devices for total (minor and major) differences, (40.0% vs 31.8%,P < 0.007) however, the number of major differences is explained by inter-observer variability.Image quality and diagnostic accuracy of the hand-carried device, OptiGo, was adequate for the purpose of performing a focused assessment of a limited number of 2D and Doppler parameters for the evaluation of cardiac anatomy and function.

    View details for PubMedID 11888820

  • Real-time interactive coronary MRA MAGNETIC RESONANCE IN MEDICINE Nayak, K. S., Pauly, J. M., Yang, P. C., Hu, B. S., Meyer, C. H., Nishimura, D. G. 2001; 46 (3): 430-435


    An interactive real-time imaging system capable of rapid coronary artery imaging is described. High-resolution spiral and circular echo planar trajectories were used to achieve 0.8 x 1.6 mm2 resolution in 135 ms (CEPI) or 1.13 x 1.13 mm2 resolution in 189 ms (spirals), over a 20-cm FOV. Using a sliding window reconstruction, display rates of up to 37 images/sec were achieved. Initial results indicate this technique can perform as a high-quality 2D coronary localizer and with SNR improvement may enable rapid screening of the coronary tree.

    View details for Web of Science ID 000170740300004

    View details for PubMedID 11550232

  • Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Kaji, S., Yang, P. C., Kerr, A. B., Tang, W. H., Meyer, C. H., Macovski, A., Pauly, J. M., Nishimura, D. G., Hu, B. S. 2001; 38 (2): 527-533


    The purpose of this study was to validate cardiac measurements derived from real-time cardiac magnetic resonance imaging (MRI) as compared with well-validated conventional cine MRI.Although cardiac MRI provides accurate assessment of left ventricular (LV) volume and mass, most techniques have been relatively slow and required electrocardiogram (ECG) gating over many heart beats. A newly developed real-time MRI system allows continuous real-time dynamic acquisition and display without cardiac gating or breath-holding.Fourteen healthy volunteers and nine patients with heart failure underwent real-time and cine MRI in the standard short-axis orientation with a 1.5T MRI scanner. Nonbreath-holding cine MRI was performed with ECG gating and respiratory compensation. Left ventricular end-diastolic volume (LVEDV), left ventricular endsystolic volume (LVESV), ejection fraction (EF) and LV mass calculated from the images obtained by real-time MRI were compared to those obtained by cine MRI.The total study time including localization for real-time MRI was significantly shorter than cine MRI (8.6 +/- 2.3 vs. 24.7 +/- 3.5 min, p < 0.001). Both imaging techniques yielded good quality images allowing cardiac measurements. The measurements of LVEDV, LVESV, EF and LV mass obtained with real-time MRI showed close correlation with those obtained with cine MRI (LVEDV: r = 0.985, p < 0.001; LVESV: r = 0.994, p < 0.001; EF: r = 0.975, p < 0.001; LV mass: r = 0.977, p < 0.001).Real-time MRI provides accurate measurements of LV volume and mass in a time-efficient manner with respect to image acquisition.

    View details for Web of Science ID 000170205800033

    View details for PubMedID 11499748

  • Rapid ventricular assessment using real-time interactive multislice MRI MAGNETIC RESONANCE IN MEDICINE Nayak, K. S., Pauly, J. M., Nishimura, D. G., Hu, B. S. 2001; 45 (3): 371-375


    A multislice real-time imaging technique is described which can provide continuous visualization of the entire left ventricle under resting and stress conditions. Three dynamically adjustable slices containing apical, mid, and base short axis views are imaged 16 times/sec (48 images/sec), with each image providing 3.12 mm resolution over a 20 cm field of view. Initial studies indicate that this technique is useful for the assessment of LV function by providing simultaneous real-time visualization of all 16 wall segments. This technique may also be used for stress LV function and, when used in conjunction with contrast agents, myocardial perfusion imaging. Magn Reson Med 45:371-375, 2001.

    View details for Web of Science ID 000167163800004

    View details for PubMedID 11241692

  • The real-time interactive 3-D-DVA for robust coronary MRA IEEE TRANSACTIONS ON MEDICAL IMAGING Sachs, T. S., Meyer, C. H., Pauly, J. M., Hu, B. S., Nishimura, D. G., Macovski, A. 2000; 19 (2): 73-79


    A graphical user interface (GUI) has been developed which enables interactive feedback and control to the real-time diminishing variance algorithm (DVA). This interactivity allows the user to set scan parameters, view scan statistics, and view image updates during the course of the scan. In addition, the DVA has been extended to simultaneously reduce motion artifacts in three dimensions using three orthogonal navigators. Preliminary in vivo studies indicate that these improvements to the standard DVA allow for significantly improved consistency and robustness in eliminating respiratory motion artifacts from MR images, particularly when imaging the coronary arteries.

    View details for Web of Science ID 000086614000001

    View details for PubMedID 10784279

  • High-resolution three-dimensional in vivo imaging of atherosclerotic plaque MAGNETIC RESONANCE IN MEDICINE Luk-Pat, G. T., Gold, G. E., Olcott, E. W., Hu, B. S., Nishimura, D. G. 1999; 42 (4): 762-771


    The internal structure of atherosclerotic-plaque lesions may be a useful predictor of which lesions will rupture and cause sudden events such as heart attack or stroke. With lipid and flow suppression, we obtained high-resolution, three-dimensional (3D) images of atherosclerotic plaque in vivo that show the cap thickness and core size of the lesions. 3D GRASE was used because it provides flexible T(2) contrast and good resistance to off-resonance artifacts. While 2D RARE has similar properties, its resolution in the slice-select direction, which is important because of the irregular geometry of atherosclerotic lesions, is limited by achievable slice-excitation profiles. Also, 2D imaging generally achieves lower SNR than 3D imaging because, for SNR purposes, 3D image data is averaged over all the slices of a corresponding multislice 2D dataset. Although 3D RARE has many of the advantages of 3D GRASE, it requires a longer scan time because it uses more refocusing pulses to acquire the same amount of data. Finally, cardiac gating is an important part of our imaging sequence, but can make the imaging time quite long. To obtain reasonable scan times, a 2D excitation pulse was used to restrict the field of view. Magn Reson Med 42:762-771, 1999.

    View details for Web of Science ID 000082944400019

    View details for PubMedID 10502766

  • New real-time interactive cardiac magnetic resonance imaging system complements echocardiography JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Yang, P. C., Kerr, A. B., Liu, A. C., Liang, D. H., Hardy, C., Meyer, C. H., Macovski, A., Pauly, J. M., Hu, B. S. 1998; 32 (7): 2049-2056


    We conducted an initial clinical trial of a newly developed cardiac magnetic resonance imaging (CMRI) system. We evaluated left ventricular (LV) function in 85 patients to compare the clinical utility of the CMRI system with echocardiography, the current noninvasive gold standard.Conventional CMRI systems require cardiac-gating and respiratory compensation to synthesize a single image from data acquired over multiple cardiac cycles. In contrast, the new CMRI system allows continuous real-time dynamic acquisition and display of any scan plane at 16 images/s without the need for cardiac gating or breath-holding.A conventional 1.5T Signa MRI Scanner (GE, Milwaukee, Wisconsin) was modified by the addition of an interactive workstation and a bus adapter. The new CMRI system underwent clinical trial by testing its ability to evaluate global and regional LV function. The first group (A) consisted of 31 patients with acceptable echocardiography image quality. The second group (B) consisted of 31 patients with suboptimal echocardiography image quality. The third group (C) consisted of 29 patients with severe lung disease or congenital cardiac malformation who frequently have suboptimal echo study. Two independent observers scored wall motion and image quality using the standard 16-segment model and rank-order analysis.CMRI evaluation was complete in less than 15 min. In group A, no significant difference was found between ECHO and CMRI studies (p = NS). In group B, adequate visualization of wall segments was obtained 38% of the time using ECHO and 97% of the time using CMRI (p < 0.0001). When grouped into coronary segments, adequate visualization of at least one segment occurred in 18 of 30 patients (60%) with ECHO and in all 30 patients (100%) with CMRI (p < 0.0001). In group C, adequate visualization of the wall segments was obtained in 58% (CI 0.53-0.62) of the time using echocardiography and 99.7% (CI 0.99-1.0) of the time using CMRI (p < 0.0001).The new CMRI system provides clinically reliable evaluation of LV function and complements suboptimal echocardiography. In comparison with the conventional CMRI, the new CMRI system significantly reduces scan time, patient discomfort and associated cost.

    View details for Web of Science ID 000077396200039

    View details for PubMedID 9857892

  • One-shot spatially resolved velocity imaging MAGNETIC RESONANCE IN MEDICINE Pat, G. T., Pauly, J. M., Hu, B. S., Nishimura, D. G. 1998; 40 (4): 603-613


    For quantitative velocity measurement, we have developed a technique that acquires full velocity spectra without cardiac gating. After a cylindrical excitation restricts imaging to one spatial dimension, data are acquired while an oscillating gradient is played out. After each excitation, an image of velocity versus spatial location is obtained. For a given spatial location, a series of these images can be used to form an image of velocity versus time. Acquisition times are much shorter than for phase-contrast imaging or Fourier-encoded velocity imaging, obviating the need for cardiac gating. Although a two-shot version of this technique has been presented previously, we have developed a one-shot version that offers higher temporal resolution for a given velocity resolution and superior off-resonance properties.

    View details for Web of Science ID 000076080900012

    View details for PubMedID 9771577

  • Real-time interactive MRI on a conventional scanner MAGNETIC RESONANCE IN MEDICINE Kerr, A. B., Pauly, J. M., Hu, B. S., Li, K. C., Hardy, C. J., Meyer, C. H., Macovski, A., Nishimura, D. G. 1997; 38 (3): 355-367


    A real-time interactive MRI system capable of localizing coronary arteries and imaging arrhythmic hearts in real-time is described. Non-2DFT acquisition strategies such as spiral-interleaf, spiral-ring, and circular echo-planar imaging provide short scan times on a conventional scanner. Real-time gridding reconstruction at 8-20 images/s is achieved by distributing the reconstruction on general-purpose UNIX workstations. An X-windows application provides interactive control. A six-interleaf spiral sequence is used for cardiac imaging and can acquire six images/s. A sliding window reconstruction achieves display rates of 16-20 images/s. This allows cardiac images to be acquired in real-time, with minimal motion and flow artifacts, and without breath holding or cardiac gating. Abdominal images are acquired at over 2.5 images/s with spiral-ring or circular echo-planar sequences. Reconstruction rates are 8-10 images/s. Rapid localization in the abdomen is demonstrated with the spiral-ring acquisition, whereas peristaltic motion in the small bowel is well visualized using the circular echo-planar sequence.

    View details for Web of Science ID A1997XW16200002

    View details for PubMedID 9339436

  • Forward-looking catheters. Seminars in interventional cardiology : SIIC Liang, D. H., Hu, B. S. 1997; 2 (1): 75-81


    Current intravascular ultrasound catheters provide a cross-sectional view of the blood vessel that limits their ability to visualize severely stenosed or occluded vessels. Forward-looking ultrasound catheters can overcome these limitations. Development of a practical forward-looking ultrasound catheter requires solutions to address the need for improved lateral resolution and depth of penetration presented by the forward-looking format. Methods are also needed to generate the forward-looking scan within the space constraints of a catheter. New developments using mechanical scanning methods suggest that a practical device appears achievable. Two-dimensional, as well as three-dimensional imaging, may be possible. Early efforts towards a phased array scanner have also begun.

    View details for PubMedID 9546988

  • A forward-viewing intravascular ultrasound catheter suitable for intracoronary use. Biomedical instrumentation & technology Liang, D. H., Hu, B. S. 1997; 31 (1): 45-53


    Current intravascular ultrasound (IVUS) catheters provide a transverse cross-sectional view of the blood vessel, thus limiting their ability to visualize severely stenosed or occluded vessels. Forward-viewing IVUS devices can overcome these limitations. Previously described forward-viewing IVUS catheters are mechanically complex, making them too bulky for use in coronary arteries. A new design for small-forward viewing IVUS catheters was developed. Using this design, flexible 5-Fr (1.6 mm diameter) and 8-Fr (2.6 mm diameter) prototype catheters up to 110 cm long, suitable for intravascular work, were constructed. Imaging of cadaver arterial segments was performed using these prototype catheters. Structures such as branches and plaque and features such as calcium were well seen with these catheters. Correlation of lumen dimensions measured with the IVUS catheters and by histology (HIST) was excellent: IVUS = 1.06 x HIST - 1.45 mm, r2 = 0.98. This new technology holds promise as a tool for guiding intravascular interventions.

    View details for PubMedID 9051225

  • Accuracy of biplane and multiplane transesophageal echocardiography in diagnosis of typical acute aortic dissection and intramural hematoma JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Keren, A., Kim, C. B., Hu, B. S., Eyngorina, I., Billingham, M. E., Mitchell, R. S., Miller, D. C., Popp, R. L., Schnittger, I. 1996; 28 (3): 627-636


    The purpose of this study was to evaluate the diagnostic accuracy of biplane and multiplane transesophageal echocardiography in patients with suspected aortic dissection, including intramural hematoma.Transesophageal echocardiography is a useful technique for rapid bedside evaluation of patients with suspected acute aortic dissection. The sensitivity of transesophageal echocardiography is high, but the diagnostic accuracy of biplane and multiplane transesophageal echocardiography for dissection and intramural hematoma is less well defined.We studied 112 consecutive patients at a major referral center who had undergone biplane or multiplane transesophageal echocardiography to identify aortic dissection. The presence, absence and type of aortic dissection (type A or B, typical dissection or intramural hematoma) were confirmed by operation or autopsy in 60 patients and by other imaging techniques in all. The accuracy of transesophageal echocardiography for ancillary findings of aortic dissection (intimal flap, fenestration and thrombosis) was assessed in the 60 patients with available surgical data.Of the 112 patients, aortic dissection was present in 49 (44%); 10 of these had intramural hematoma (5 with and 5 without involvement of the ascending aorta). Of the remaining 63 patients without dissection, 33 (29%) had aortic aneurysm and 30 (27%) had neither dissection nor aneurysm. The overall sensitivity and specificity of transesophageal echocardiography for the presence of dissection were 98% and 95%, respectively. The specificity for type A and type B dissection was 97% and 99%, respectively. The sensitivity and specificity for intramural hematoma was 90% and 99%, respectively. The accuracy of transesophageal echocardiography for diagnosis of acute significant aortic regurgitation and pericardial tamponade was 100%.Biplane and multiplane transesophageal echocardiography are highly accurate for prospective identification of the presence and site of aortic dissection, its ancillary findings and major complications in a large series of patients with varied aortic pathology. Intramural hematoma carries a high complication rate and should be treated identically with aortic dissection.

    View details for Web of Science ID A1996VE27300013

    View details for PubMedID 8772749



    A technique has been developed whereby motion can be detected in real time during the acquisition of data. This enables the implementation of several algorithms to reduce or eliminate motion effects from an image as it is being acquired. One such algorithm previously described is the acceptance/rejection method. This paper deals with another real-time algorithm called the diminishing variance algorithm (DVA). With this method, a complete set of preliminary data is acquired along with information about the relative motion position of each frame of data. After all the preliminary data are acquired, the position information is used to determine which data frames are most corrupted by motion. Frames of data are then reacquired, starting with the most corrupted one. The position information is continually updated in an iterative process; therefore, each subsequent reacquisition is always done on the worst frame of data. The algorithm has been implemented on several different types of sequences. Preliminary in vivo studies indicate that motion artifacts are dramatically reduced.

    View details for Web of Science ID A1995RR68700018

    View details for PubMedID 7500881

  • CORONARY ANGIOGRAPHY WITH MAGNETIZATION-PREPARED T-2 CONTRAST MAGNETIC RESONANCE IN MEDICINE Brittain, J. H., Hu, B. S., Wright, G. A., Meyer, C. H., Macovski, A., Nishimura, D. G. 1995; 33 (5): 689-696


    A magnetization-prepared, T2-weighted sequence (T2 Prep) is used to suppress muscle and venous structures. When combined with lipid suppression, this technique improves the visualization of the coronary arteries. T2 Prep was designed to be rebust in the presence of flow as well as B0 and B1 inhomogeneities and may be combined with virtually any imaging technique. Here, it is implemented with both a single-slice spiral acquisition and a multi-slice spiral method that acquires up to 15 slices in a single breath-holding interval.

    View details for Web of Science ID A1995QV05800014

    View details for PubMedID 7596274

  • REAL-TIME MOTION DETECTION IN SPIRAL MRI USING NAVIGATORS MAGNETIC RESONANCE IN MEDICINE Sachs, T. S., Meyer, C. H., Hu, B. S., Kohli, J., Nishimura, D. G., Macovski, A. 1994; 32 (5): 639-645


    A technique has been developed whereby motion can be detected in real time during the acquisition of data. This enables the implementation of an algorithm to accept or reject and reacquire data during a scan. Frames of data with motion are rejected and reacquired on the fly so that by the end of the scan, a complete motion-free data set has been acquired. The algorithm has been implemented on several different types of sequences. Preliminary in vivo studies indicate that motion artifacts are dramatically reduced.

    View details for Web of Science ID A1994PN57500012

    View details for PubMedID 7808265



    The accurate measurement of flow velocity has long been a subject of NMR research. In the field of medical imaging, a variety of techniques primarily based on the principle of Fourier encoding have been described. Due to time constraints, necessary trade-offs exist between spatial versus velocity spectral resolution. In general, either the average velocity of individual pixels is displayed or velocity spectral determinations are made at the cost of spatial localization. The recent development of multidimensional excitation pulses makes spatial localization possible during the excitation phase of the pulse sequences. This approach, coupled with time varying gradient readout, can be used to obtain single-shot localized velocity spectra. Using these concepts, we have obtained in vivo real-time measurements of localized velocity spectra on our clinical imager.

    View details for Web of Science ID A1993LV99700018

    View details for PubMedID 8412614



    A technique is presented for collecting the spin velocity distribution as a function of position and time. It uses a multidimensional excitation pulse to select a cylinder, giving localization in two dimensions. Resolution in the third spatial dimension is achieved in the readout. During readout, an oscillating gradient encodes the acquired data in both one spatial dimension (x) and one velocity dimension (v). Two acquisitions (42 ms each) are needed to get a complete coverage of kx--kv space, which makes this technique real-time. The data is interpolated from the nonuniformly sampled kx--kv space to a Cartesian frame with a gridding scheme to take advantage of the Fast Fourier Transform. The technique was successfully applied to phantoms and normal volunteers, giving reasonable real-time measurements of velocity.

    View details for Web of Science ID A1993LP88200008

    View details for PubMedID 8366802



    Cross relaxation between macromolecular protons and water protons is known to be important in biologic tissue. In magnetic resonance (MR) imaging sequences, selective saturation of the characteristically short T2 macromolecular proton pool can produce contrast called magnetization transfer contrast, based on the cross-relaxation process. Selective saturation can be achieved with continuous wave irradiation several kilohertz off resonance or short, intense 0 degree pulses on resonance. The authors analyze 0 degree binomial pulses for T2 selective saturation, present design guidelines, and demonstrate the use of these pulses in spin-echo imaging sequences in healthy volunteers and patients. Using the phenomenologic Bloch equations modified for two-site exchange, the authors derive the analytic expressions for water proton relaxation under periodic pulsed saturation of the macromolecular protons. This relaxation is shown to be monoexponential, with a rate constant dependent on the saturation pulse repetition rate and the individual and cross-relaxation rates.

    View details for Web of Science ID A1993LC10000013

    View details for PubMedID 8324313

  • A 3-DIMENSIONAL SPIN-ECHO OR INVERSION PULSE MAGNETIC RESONANCE IN MEDICINE Pauly, J. M., Hu, B. S., Wang, S. J., Nishimura, D. G., Macovski, A. 1993; 29 (1): 2-6


    In theory, multidimensional pulses can be designed to be selective in any number of dimensions. In practice, available gradient power has enforced a limit to two dimensions. We show here that three-dimensional pi pulses are feasible on commercial imaging machines provided that the range of off-resonance frequencies are limited.

    View details for Web of Science ID A1993KJ34900001

    View details for PubMedID 8419739

  • FAST SPIRAL CORONARY-ARTERY IMAGING MAGNETIC RESONANCE IN MEDICINE Meyer, C. H., Hu, B. S., Nishimura, D. G., Macovski, A. 1992; 28 (2): 202-213


    A flow-independent method for imaging the coronary arteries within a breath-hold on a standard whole-body MR imager was developed. The technique is based on interleaved spiral k-space scanning and forms a cardiac-gated image in 20 heartbeats. The spiral readouts have good flow properties and generate minimal flow artifacts. The oblique slices are positioned so that the arteries are in the plane and so that the chamber blood does not obscure the arteries. Fat suppression by a spectral-spatial pulse improves the visualization of the arteries.

    View details for Web of Science ID A1992KB92200003

    View details for PubMedID 1461123

  • PULSED SATURATION TRANSFER CONTRAST MAGNETIC RESONANCE IN MEDICINE Hu, B. S., Conolly, S. M., Wright, G. A., Nishimura, D. G., Macovski, A. 1992; 26 (2): 231-240


    In vivo 1H conventional NMR image contrast generation usually relies on the macroscopic T1 and T2 relaxation parameters of the tissues of interest. Recently cross-relaxation related image contrast has been reported by Wolff and Balaban in animal models. Due primarily to the broad lineshape of the intended saturation spin pool and the use of off-resonance irradiation, high specific absorption rate and an auxiliary RF amplifier have been necessary to produce these images. The relatively long spin-lattice relaxation property of this spin pool, however, suggests the use of pulse methods to achieve saturation. In this paper, we show that short-T2 spin pools can be selectively saturated with short intense RF pulses. Cross-relaxation time constants can be measured using the technique of saturation recovery. In vivo magnetization-transfer-weighted images can be produced using pulses on commercial whole-body imagers without additional hardware.

    View details for Web of Science ID A1992JH50500004

    View details for PubMedID 1325023



    Time-of-flight (TOF) angiography based on inflow enhancement is limited by the steady-state signal differences between blood and the surrounding stationary tissues. We present a new TOF sequence in which magnetization transfer contrast is used to supplement wash-in effects. Angiograms demonstrating the superior performance of this technique are presented.

    View details for Web of Science ID A1992HX35600016

    View details for PubMedID 1614322



    The use of magnetic resonance (MR) imaging is investigated for noninvasively estimating the oxygen saturation of human blood (%HbO2) in vivo by means of relaxation characteristics identified in earlier MR spectrometry studies. To this end, a sequence is presented for determining the T2 of vascular blood in regions in which motions of the body and of the blood itself present a major challenge. With use of this sequence on a commercial 1.5-T whole-body imager, the relationship between the T2 and %HbO2 of blood is calibrated in vitro for the conditions expected in vivo. T2 varies predictably from about 30 to 250 msec as %HbO2 varies from 30% to 96%. T2 values measured in situ for vascular blood in the mediastinum of several healthy subjects qualitatively reflected the behavior observed in vitro. Estimates of %HbO2 for these vessels obtained with the in vitro calibration appear reasonable, particularly for venous blood, although difficulties arise in selecting the appropriate calibration factors. These encouraging initial results support a more systematic study of potential sources of error and an examination of the accuracy of in vivo measurements by comparison with direct measurements of %HbO2 in vessels.

    View details for Web of Science ID A1991HA76500002



    Using a fast version of selective inversion recovery, we have obtained coronary angiograms of normal volunteers showing the proximal portions of the left coronary artery. Blood is tagged in the aortic root at end systole using a 2D inversion pulse. After a wash-in time of 300-600 ms, the coronary vessels are imaged with a 2- to 3-cm-thick slab in either axial or oblique projection. The scan is completed within a breathhold in 24 heartbeats.

    View details for Web of Science ID A1991FF36100015

    View details for PubMedID 2046523

Conference Proceedings

  • Real-time black-blood MRI using spatial presaturation Nayak, K. S., Rivas, P. A., Pauly, J. M., Scott, G. C., Kerr, A. B., Hu, B. S., Nishimura, D. G. JOHN WILEY & SONS INC. 2001: 807-812


    A real-time interactive black-blood imaging system is described. Rapid blood suppression is achieved by exciting and dephasing slabs outside the imaging slice before each imaging excitation. Sharp-profiled radio frequency saturation pulses placed close to the imaging slice provide good blood suppression, even in views containing slow through-plane flow. In vivo results indicate that this technique improves endocardial border definition during systole in real-time cardiac wall-motion studies. Phantom and animal results indicate that this technique nearly eliminates flow artifacts in real-time intravascular studies. J. Magn. Reson. Imaging 2001;13:807-812.

    View details for Web of Science ID 000171296300020

    View details for PubMedID 11329205

  • Real-time color flow MRI Nayak, K. S., Pauly, J. M., Kerr, A. B., Hu, B. S., Nishimura, D. G. JOHN WILEY & SONS INC. 2000: 251-258


    A real-time interactive color flow MRI system capable of rapidly visualizing cardiac and vascular flow is described. Interleaved spiral phase contrast datasets are acquired continuously, while real-time gridding and phase differencing is used to compute density and velocity maps. These maps are then displayed using a color overlay similar to what is used by ultrasound. For cardiac applications, 6 independent images/sec are acquired with in-plane resolution of 2.4 mm over a 20 cm field of view (FOV). Sliding window reconstruction achieves display rates up to 18 images/sec. Appropriate tradeoffs are made for other applications. Flow phantom studies indicate this technique accurately measures velocities up to 2 m/sec, and accurately captures real-time velocity waveforms (comparable to continuous wave ultrasound). In vivo studies indicate this technique is useful for imaging cardiac and vascular flow, particularly valvular regurgitation. Arbitrary scan planes can be quickly localized, and flow measured in any direction.

    View details for Web of Science ID 000084993500012

    View details for PubMedID 10680689