Academic Appointments


All Publications


  • Cannulation Strategies in Ex Vivo Lung Perfusion. ASAIO journal (American Society for Artificial Internal Organs : 1992) Guenthart, B. A., O'Neill, J. D., Bacchetta, M. 2021

    View details for DOI 10.1097/MAT.0000000000001621

    View details for PubMedID 34882646

  • Homogeneous Distribution of Exogenous Cells onto De-epithelialized Rat Trachea via Instillation of Cell-Loaded Hydrogel. ACS biomaterials science & engineering Chen, J., Mir, S. M., Pinezich, M. R., O'Neill, J. D., Guenthart, B. A., Bacchetta, M., Vunjak-Novakovic, G., Huang, S. X., Kim, J. 2021

    Abstract

    Injured or diseased airway epithelium due to repeated environmental insults or genetic mutations can lead to a functional decline of the lung and incurable lung diseases. Bioengineered airway tissue constructs can facilitate in vitro investigation of human lung diseases and accelerate the development of effective therapeutics. Here, we report robust tissue manipulation modalities that allow: (i) selective removal of the endogenous epithelium of in vitro cultured airway tissues and (ii) spatially uniform distribution and prolonged cultivation of exogenous cells that are implanted topically onto the denuded airway lumen. Results obtained highlight that our approach to airway tissue manipulation can facilitate controlled removal of the airway epithelium and subsequent homogeneous distribution of newly implanted cells. This study can contribute to the creation of innovative tissue engineering methodologies that can facilitate the treatment of lung diseases, such as cystic fibrosis, primary ciliary dyskinesia, and chronic obstructive pulmonary disease.

    View details for DOI 10.1021/acsbiomaterials.1c01031

    View details for PubMedID 34874712

  • Extended Static Hypothermic Preservation In Cardiac Transplantation: A Case Report. Transplantation proceedings Guenthart, B. A., Krishnan, A., Koyano, T., La Francessca, S., Chan, J., Alassar, A., Macarthur, J. W., Shudo, Y., Hiesinger, W., Woo, Y. J. 2021

    Abstract

    BACKGROUND: The donor shortage poses a major limitation to use of heart transplantation. Novel strategies such as use of expanded-criteria donors with prolonged ischemia times are being employed to address this need. Recent developments in static hypothermia have allowed for the safe use of cardiac allografts with prolonged ischemic times.CASE REPORT: We present the case of a 68-year-old woman with valvular cardiomyopathy refractory to medical therapy who underwent orthotopic heart transplantation with a cardiac allograft exposed to elevated ischemic times. This was achieved through use of the federally approved SherpaPak Cardiac Transport System for transportation of the allograft. This method of static hypothermic organ preservation allowed for a 330-minute total ischemic time, including 283 minutes of storage within the preservation system. The patient tolerated the procedure well and was discharged on postoperative day 10, with excellent graft function and no evidence of rejection 3 months postoperatively.CONCLUSIONS: Though traditionally ischemic times of 240 minutes or less are recommended for cardiac allografts, we demonstrate, to our knowledge, the longest reported ischemic time of 330 minutes via use of a novel method of static hypothermia for organ preservation. The recipient had an excellent outcome postoperatively, demonstrating the potential for this new organ preservation system to expand the donor pool and improve access and use of heart transplantation.

    View details for DOI 10.1016/j.transproceed.2021.08.021

    View details for PubMedID 34521542

  • Xenogeneic support for the recovery of human donor organs. The Journal of thoracic and cardiovascular surgery O'Neill, J. D., Guenthart, B. A., Hozain, A. E., Bacchetta, M. 2021

    Abstract

    VIDEO ABSTRACT.

    View details for DOI 10.1016/j.jtcvs.2021.07.055

    View details for PubMedID 34607726

  • Resection of a Giant Epithelioid Hemangioendothelioma Arising from the Superior Vena Cava. The Annals of thoracic surgery Elliott, I. A., Kasinpila, P., Guenthart, B. A., MacArthur, J. W., Berry, M. F. 2021

    Abstract

    Epithelioid hemangioendothelioma is a rare malignant vascular sarcoma. Here we present a patient with a very large tumor arising from the superior vena cava (SVC), in whom a resection with negative margins was accomplished using veno-venous bypass and bovine pericardial patch reconstruction of the SVC.

    View details for DOI 10.1016/j.athoracsur.2021.01.034

    View details for PubMedID 33529605

  • First lung and kidney multi-organ transplant following COVID-19 Infection. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation Guenthart, B. A., Krishnan, A., Alassar, A., Madhok, J., Kakol, M., Miller, S., Cole, S. P., Rao, V. K., Acero, N. M., Hill, C. C., Cheung, C., Jackson, E. C., Feinstein, I., Tsai, A. H., Mooney, J. J., Pham, T., Elliott, I. A., Liou, D. Z., La Francesca, S., Shudo, Y., Hiesinger, W., MacArthur, J. W., Brar, N., Berry, G. J., McCarra, M. B., Desai, T. J., Dhillon, G. S., Woo, Y. J. 2021

    Abstract

    As the world responds to the global crisis of the COVID-19 pandemic an increasing number of patients are experiencing increased morbidity as a result of multi-organ involvement. Of these, a small proportion will progress to end-stage lung disease, become dialysis dependent, or both. Herein, we describe the first reported case of a successful combined lung and kidney transplantation in a patient with COVID-19. Lung transplantation, isolated or combined with other organs, is feasible and should be considered for select patients impacted by this deadly disease.

    View details for DOI 10.1016/j.healun.2021.02.015

    View details for PubMedID 34059432

  • Non-destructive vacuum-assisted measurement of lung elastic modulus. Acta biomaterialia Chen, J., Mir, S. M., Pinezich, M. R., O'Neill, J. D., Guenthart, B. A., Bacchetta, M., Vunjak-Novakovic, G., Huang, S. X., Kim, J. 2021

    Abstract

    In living tissues, mechanical stiffness and biological function are intrinsically linked. Alterations in the stiffness of tissues can induce pathological interactions that affect cellular activity and tissue function. Underlying connections between tissue stiffness and disease highlights the importance of accurate quantitative characterizations of soft tissue mechanics, which can improve our understanding of disease and inform therapeutic development. In particular, accurate measurement of lung mechanical properties has been especially challenging due to the anatomical and mechanobiological complexities of the lung. Discrepancies between measured mechanical properties of dissected lung tissue samples and intact lung tissues in vivo has limited the ability to accurately characterize integral lung mechanics. Here, we report a non-destructive vacuum-assisted method to evaluate mechanical properties of soft biomaterials, including intact tissues and hydrogels. Using this approach, we measured elastic moduli of rat lung tissue that varied depending on stress-strain distribution throughout the lung. We also observed that the elastic moduli of enzymatically disrupted lung parenchyma increased by at least 64%. The reported methodology enables assessment of the nonlinear viscoelastic characteristics of intact lungs under normal and abnormal (i.e., injured, diseased) conditions and allows measurement of mechanical properties of tissue-mimetic biomaterials for use in therapeutics or in vitro models. STATEMENT OF SIGNIFICANCE: Accurate quantification of tissue stiffness is critical for understanding mechanisms of disease and developing effective therapeutics. Current modalities to measure tissue stiffness are destructive and preclude accurate assessment of lung mechanical properties, as lung mechanics are determined by complex features of the intact lung. To address the need for alternative methods to assess lung mechanics, we report a non-destructive vacuum-based approach to quantify tissue stiffness. We applied this method to correlate lung tissue mechanics with tissue disruption, and to assess the stiffness of biomaterials. This method can be used to inform the development of tissue-mimetic materials for use in therapeutics and disease models, and could potentially be applied for in-situ evaluation of tissue stiffness as a diagnostic or prognostic tool.

    View details for DOI 10.1016/j.actbio.2021.06.037

    View details for PubMedID 34192570

  • Surgical technique for atrial-esophageal fistula repair after catheter ablation: An underrecognized complication JTCVS TECHNIQUES Guenthart, B. A., Sun, B., De Biasi, A., Fischbein, M. P., Liou, D. Z. 2020; 4: 169-172
  • Gut bioengineering strategies for regenerative medicine. American journal of physiology. Gastrointestinal and liver physiology O'Neill, J. D., Pinezich, M. R., Guenthart, B. A., Vunjak-Novakovic, G. 2020

    Abstract

    Gastrointestinal disease burden continues to rise in the United States and worldwide. The development of bioengineering strategies to model gut injury or disease and to re-establish functional gut tissue could expand therapeutic options and improve clinical outcomes. Current approaches leverage a rapidly evolving gut bioengineering toolkit aimed at: (i) de-novo generation of gut-like tissues at multiple scales for microtissue models or implantable grafts, and (ii) regeneration of functional gut in vivo. Although significant progress has been made in intestinal organoid cultures and engineered tissues, development of predictive in-vitro models and effective regenerative therapies remains challenging. In this review, we survey emerging bioengineering tools and recent methodological advances to identify future opportunities and challenges in gut bioengineering for disease modeling and regenerative medicine.

    View details for DOI 10.1152/ajpgi.00206.2020

    View details for PubMedID 33174453

  • Intracardiac paragangliomas: surgical approach and perioperative management. General thoracic and cardiovascular surgery Guenthart, B. A., Trope, W., Keeyapaj, W., Weiel, J. J., Edmonson, A., MacArthur, J. W., Annes, J. P., Woo, Y. J., Lui, N. S. 2020

    Abstract

    Intracardiac paragangliomas most commonly arise from the left atrium and are often infiltrative and densely adherent to surrounding structures. Given their rarity, only scattered reports exist in the literature and standardized perioperative and surgical management is not well established. We describe a case of a 60-year-old woman with a mildly functioning intracardiac paraganglioma in which division of the superior vena cava improved exposure and enabled a complex limited resection. Further, we provide an overview of the diagnostic workup, perioperative medical management, surgical approach, and surveillance strategy in patients with these challenging tumors.

    View details for DOI 10.1007/s11748-020-01503-2

    View details for PubMedID 33074472

  • Greater Ipsilateral Rectus Muscle Atrophy after Robotic Thoracic Surgery Compared to Open and VATS Approaches Wang, Y., Bhandari, P., Trope, W., Guenthart, B. A., Guo, H., Liou, D., Backhus, L. M., Berry, M., Ben Shrager, J., Lui, N. ELSEVIER SCIENCE INC. 2020: S289
  • Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nature medicine Hozain, A. E., O'Neill, J. D., Pinezich, M. R., Tipograf, Y., Donocoff, R., Cunningham, K. M., Tumen, A., Fung, K., Ukita, R., Simpson, M. T., Reimer, J. A., Ruiz, E. C., Queen, D., Stokes, J. W., Cardwell, N. L., Talackine, J., Kim, J., Snoeck, H., Chen, Y., Romanov, A., Marboe, C. C., Griesemer, A. D., Guenthart, B. A., Bacchetta, M., Vunjak-Novakovic, G. 2020; 26 (7): 1102–13

    Abstract

    Patients awaiting lung transplantation face high wait-list mortality, as injury precludes the use of most donor lungs. Although ex vivo lung perfusion (EVLP) is able to recover marginal quality donor lungs, extension of normothermic support beyond 6h has been challenging. Here we demonstrate that acutely injured human lungs declined for transplantation, including a lung that failed to recover on EVLP, can be recovered by cross-circulation of whole blood between explanted human lungs and a Yorkshire swine. This xenogeneic platform provided explanted human lungs a supportive, physiologic milieu and systemic regulation that resulted in functional and histological recovery after 24h of normothermic support. Our findings suggest that cross-circulation can serve as a complementary approach to clinical EVLP to recover injured donor lungs that could not otherwise be utilized for transplantation, as well as a translational research platform for immunomodulation and advanced organ bioengineering.

    View details for DOI 10.1038/s41591-020-0971-8

    View details for PubMedID 32661401

  • Resident education in robotic thoracic surgery VIDEO-ASSISTED THORACIC SURGERY Guenthart, B. A., Lui, N. S. 2020; 5
  • Commentary: Lung cancer outcomes reporting within the VA system: room for improvement. Seminars in thoracic and cardiovascular surgery Guenthart, B. A., Backhus, L. M., Lui, N. S. 2020

    View details for DOI 10.1053/j.semtcvs.2020.06.008

    View details for PubMedID 32569647

  • Surgical technique for atrial-esophageal fistula repair after catheter ablation: An underrecognized complication. JTCVS techniques Guenthart, B. A., Sun, B., De Biasi, A., Fischbein, M. P., Liou, D. Z. 2020; 4: 169-172

    View details for DOI 10.1016/j.xjtc.2020.07.022

    View details for PubMedID 34318000

    View details for PubMedCentralID PMC8303005