Independent Labs, Institutes, and Centers (Dean of Research)


Showing 111-120 of 150 Results

  • Ryan Coffee

    Ryan Coffee

    Senior Scientist, SLAC National Accelerator Laboratory

    Current Role at StanfordSr. Staff Scientist at SLAC National Accelerator Laboratory

  • Geoffrey Cohen

    Geoffrey Cohen

    James G. March Professor of Organizational Studies in Education and Business, Professor of Psychology and, by courtesy, of Organizational Behavior at the Graduate School of Business

    Current Research and Scholarly InterestsMuch of my research examines processes related to identity maintenance and their implications for social problems. One primary aim of my research is the development of theory-driven, rigorously tested intervention strategies that further our understanding of the processes underpinning social problems and that offer solutions to alleviate them. Two key questions lie at the core of my research: “Given that a problem exists, what are its underlying processes?” And, “Once identified, how can these processes be overcome?” One reason for this interest in intervention is my belief that a useful way to understand psychological processes and social systems is to try to change them. We also are interested in how and when seemingly brief interventions, attuned to underlying psychological processes, produce large and long-lasting psychological and behavioral change.

    The methods that my lab uses include laboratory experiments, longitudinal studies, content analyses, and randomized field experiments. One specific area of research addresses the effects of group identity on achievement, with a focus on under-performance and racial and gender achievement gaps. Additional research programs address hiring discrimination, the psychology of closed-mindedness and inter-group conflict, and psychological processes underlying anti-social and health-risk behavior.

  • Harvey Cohen

    Harvey Cohen

    Deborah E. Addicott - John A. Kriewall and Elizabeth A. Haehl Family Professor of Pediatrics, Emeritus

    Current Research and Scholarly InterestsMy research interests extend from hypothesis-driven studies in biochemistry and cell biology to discovery-driven interests in proteomics and systems biology to clinical treatment of acute lymphoblastic leukemia of children, and pediatric palliative care.

  • Stanley N. Cohen, MD

    Stanley N. Cohen, MD

    Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine

    Current Research and Scholarly InterestsWe study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.

  • Todd Coleman

    Todd Coleman

    Associate Professor of Bioengineering and, by courtesy, of Electrical Engineering

    BioTodd P. Coleman is an Associate Professor in the Department of Bioengineering, and by courtesy, Electrical Engineering at Stanford University. He received B.S. degrees in electrical engineering (summa cum laude), as well as computer engineering (summa cum laude) from the University of Michigan (Go Blue). He received M.S. and Ph.D. degrees from MIT in electrical engineering and computer science. He did postdoctoral studies at MIT and Mass General Hospital in quantitative neuroscience. He previously was a faculty member in the Departments of Electrical & Computer Engineering and Bioengineering at the University of Illinois, Urbana-Champaign, and the University of California, San Diego, respectively. Dr. Coleman’s research is very multi-disciplinary, using tools from applied probability, physiology, and bioelectronics. Examples include, for instance, optimal transport methods in high-dimensional uncertainty quantification and developing technologies and algorithms to monitor and modulate physiology of the nervous systems in the brain and visceral organs. He has served as a Principal Investigator on grants from the NSF, NIH, Department of Defense, and multiple private foundations. Dr. Coleman is an inventor on 10 granted US patents. He has been selected as a Gilbreth Lecturer for the National Academy of Engineering, a TEDMED speaker, and a Fellow of IEEE as well as the American Institute for Medical and Biological Engineering. He is currently the Chair of the National Academies Standing Committee on Biotechnology Capabilities and National Security Needs.

  • Nicholas Alvaro Coles

    Nicholas Alvaro Coles

    Research Scientist

    BioI am a Research Scientist at Stanford University and the co-Director of the Stanford Big Team Science Lab. I conduct research on emotions, big team science, and AI.

    In affective science, I seek to understand the social, cognitive, and physiological processes that underlie emotion. Much of my research here has focused on examining the extent to which sensorimotor feedback from the peripheral nervous system (e.g., changes in heart rate and muscle tension) impact the conscious experience of emotion.

    In big team science, I seek to build infrastructure that allows researchers to collaboratively tackle ultra-complex questions in science. In this domain, I co-direct the Stanford Big Team Science Lab, where I support various big team science initiatives (e.g., the Virtual Experience Research Accelerator, Psychological Science Accelerator, and ManyBabies Consortium).

    In artificial intelligence, I am interested in ways that these new technologies can be used to monitor, predict, and change humans' emotions. For example, I recently founded the Emotion Physiology and Experience Collaboration, which seeks to improve the algorithmic recognition of emotion by (a) documenting cultural and contextual sources of model bias, and (b) building foundational datasets that can improve these models.

  • Steven Hartley Collins

    Steven Hartley Collins

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).

    Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed undergraduate research on passive dynamic walking robots. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking. He performed postdoctoral research on humanoid robots at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.

    Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department.

  • Le Cong

    Le Cong

    Assistant Professor of Pathology (Pathology Research) and of Genetics

    Current Research and Scholarly InterestsOur lab are developing gene-editing technologies, such as CRISPR systems for in vivo therapy, and cleavage-free techniques for large gene insertion via microbial recombinase. Our team also pioneers in single-cell tracking for cancer and immunology studies using novel CRISPR tools. To accelerate our work, we integrate AI and machine learning into these technologies, design and evolve proteins/RNAs, pushing frontiers in understanding and treating neurological and immunological disease.