Bio-X
Showing 131-140 of 1,075 Results
-
Matteo Cargnello
Associate Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering
BioMatteo Cargnello received his Ph.D. in Nanotechnology in 2012 at the University of Trieste, Italy, under the supervision of Prof. Paolo Fornasiero, and he was then a post-doctoral scholar in the Chemistry Department at the University of Pennsylvania with Prof. Christopher B. Murray before joining the Faculty at Stanford University in January 2015. He is currently Associate Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering and Silas Palmer Faculty Scholar. Dr. Cargnello is the recipient of several awards including the Sloan Fellowship in 2018, the Mitsui Chemicals Catalysis Science Award for Creative Work in 2020, and the Early Career Award in Catalysis from the ACS Catalysis Division in 2022. The general goals of the research in the Cargnello group pertain to solving energy and environmental challenges. The group focuses on capture and conversion of carbon dioxide, emission control and reduction of methane and hydrocarbon emissions in the atmosphere, sustainable chemical practices through electro- and photocatalysis, sustainable production of hydrogen, and chemical recycling of plastics.
-
Suzan L Carmichael, PhD, MS
Professor (Research) of Pediatrics (Neonatology), of Obstetrics & Gynecology (Maternal Fetal Medicine) and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsDr. Carmichael is a perinatal and nutritional epidemiologist and Professor of Pediatrics and Obstetrics and Gynecology at the Stanford University School of Medicine.
Her team is committed to finding ways to improve maternal and infant health outcomes and equity by leading research that identifies effective leverage points for change, from upstream 'macro' social and structural factors, to downstream clinical factors (eg, related to care and morbidities) through a collaborative research approach that integrates epidemiologic approaches with community engagement and systems thinking.
Exposure themes include social context, nutrition, care, environmental contaminants and genetics. Outcome themes include severe maternal morbidity, stillbirth, birth defects, and preterm delivery. She is particularly interested in understanding the intersectionality of these varied types of exposures and outcomes and how they interact to impact health and health disparities, for the mother-baby dyad.
Please see the team web-site for further information!
https://med.stanford.edu/carmichaellab.html -
Victor G. Carrión
John A. Turner Endowed Professor for Child and Adolescent Psychiatry
Current Research and Scholarly InterestsExamines the interplay between brain development and stress vulnerability via a multi-method approach that includes psychophysiology, neuroimaging, neuroendocrinology and phenomenology. Treatment development that focuses on individual and community-based interventions for stress related conditions in children and adolescents that experience traumatic stress.
-
Dennis R Carter
Professor of Mechanical Engineering, Emeritus
Current Research and Scholarly InterestsProfessor Carter studies the influence of mechanical loading upon the growth, development, regeneration, and aging of skeletal tissues. Basic information from such studies is used to understand skeletal diseases and treatments. He has served as President of the Orthopaedic Research Society and is a Fellow of the American Institute for Medical and Biological Engineering.
-
Karen Casciotti
Associate Dean for Facilities and Shared Labs, Professor of Oceans, of Earth System Science and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsProfessor in Oceans and ESS, focus on marine chemistry and biogeochemistry.
-
Lynette Cegelski
Professor of Chemistry and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.
Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria. -
Chris Chafe
Duca Family Professor
BioChris Chafe is a composer, improvisor, and cellist, developing much of his music alongside computer-based research. He is Director of Stanford University's Center for Computer Research in Music and Acoustics (CCRMA). In 2019, he was International Visiting Research Scholar at the Peter Wall Institute for Advanced Studies The University of British Columbia, Visiting Professor at the Politecnico di Torino, and Edgard-Varèse Guest Professor at the Technical University of Berlin. At IRCAM (Paris) and The Banff Centre (Alberta), he has pursued methods for digital synthesis, music performance and real-time internet collaboration. CCRMA's jacktrip project involves live concertizing with musicians the world over. Online collaboration software and research into latency factors continue to evolve. An active performer either on the net or physically present, his music reaches audiences in sometimes novel venues. An early network project was a simultaneous five-country concert was hosted at the United Nations in 2009. Chafe’s works include gallery and museum music installations which are now into their second decade with “musifications” resulting from collaborations with artists, scientists and MD’s. Recent work includes the Earth Symphony, the Brain Stethoscope project (Gnosisong), PolarTide for the 2013 Venice Biennale, Tomato Quintet for the transLife:media Festival at the National Art Museum of China and Sun Shot played by the horns of large ships in the port of St. Johns, Newfoundland.
-
Page Chamberlain
Professor of Earth and Planetary Sciences and of Earth System Science
Current Research and Scholarly InterestsResearch
I use stable and radiogenic isotopes to understand Earth system history. These studies examine the link between climate, tectonics, biological, and surface processes. Projects include: 1) examining the terrestrial climate history of the Earth focusing on periods of time in the past that had CO 2-levels similar to the present and to future projections; and 2) addressing how the chemical weathering of the Earth's crust affects both the long- and short-term carbon cycle. Field areas for these studies are in the Cascades, Rocky Mountains, Sierra Nevada, the European Alps, Tibet and the Himalaya and the Southern Alps of New Zealand.
International Collaborations
Much of the research that I do has an international component. Specifically, I have collaborations with: 1) the Senckenberg Biodiversity and Climate Research Center in Frankfurt Germany as a Humboldt Fellow and 2) the Chinese University of Geosciences in Bejiing China where I collaborate with Professor Yuan Gao.
Teaching
I teach courses at the undergraduate and graduate level in isotope biogeochemistry, Earth system history, and the relationship between climate, surface processes and tectonics.
Professional Activities
Editor American Journal of Science; Co-Director Stanford Stable Isotope Biogeochemistry Laboratory (present);Chair, Department of Geological and Environmental Sciences (2004-07); Co-Director Stanford/USGS SHRIMP Ion microprobe facility (2001-04) -
Fu-Kuo Chang
Professor of Aeronautics and Astronautics
BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and multifunctional energy storage composites for transportation vehicles as well as safety-critical assets and medical devices. His specialties include embedded sensors and stretchable sensor networks with built-in self-diagnostics, integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Multifunctional energy storage composites, Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.
-
Howard Y. Chang, MD, PhD
Virginia and D. K. Ludwig Professor of Cancer Research, Professor of Genetics and, by courtesy, of Pathology
On Leave from 12/16/2024 To 12/15/2026Current Research and Scholarly InterestsOur research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.