Bio-X
Showing 221-230 of 1,075 Results
-
Mark M. Davis
Burt and Marion Avery Family Professor
Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.
-
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
John W. Day, MD, PhD
Professor of Neurology and Neurological Sciences (Adult Neurology), of Pediatrics (Genetics) and, by courtesy, of Pathology
Current Research and Scholarly InterestsOur Neuromuscular Division coordinates a comprehensive effort to conquer peripheral nerve and muscle disorders, including the muscular dystrophies, motor neuron disorders, neuromuscular junction abnormalities, and peripheral neuropathies. With patients and families foremost in mind, we have had success defining and combating these diseases, with research focused on identifying genetic causes, developing novel treatment, and maximizing patient function by optimizing current management.
-
Vinicio de Jesus Perez MD
Associate Dean of Stanford MD Admissions and Professor of Medicine (PACCM)
Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.
-
Adam de la Zerda
Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo
-
Luis de Lecea
Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical and Translational Neurosciences Incubator)
Current Research and Scholarly InterestsMy lab uses molecular, optogenetic, anatomical and behavioral methods to identify and manipulate the neuronal circuits underlying brain arousal, with particular attention to sleep and wakefulness transitions. We are also interested in the changes that occur in neuronal circuits in conditions of hyperarousal such as stress and drug addiction.
-
Giulio De Leo
Professor of Oceans, of Earth System Science, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy of Biology
Current Research and Scholarly InterestsI am a theoretical ecologist mostly interested in investigating factors and processes driving the dynamics of natural and harvested populations and on how to use this knowledge to inform practical management. I have worked broadly on life histories analysis, fishery management, dynamics and control of infectious diseases and environmental impact assessment.
-
Karl Deisseroth
D. H. Chen Professor, Professor of Bioengineering and of Psychiatry and Behavioral Sciences
Current Research and Scholarly InterestsKarl Deisseroth's laboratory created and developed optogenetics, hydrogel-tissue chemistry (beginning with CLARITY), and a broad range of enabling methods. He also has employed his technologies to discover the neural cell types and connections that cause adaptive and maladaptive behaviors.
-
Daniel James Delitto, MD, PhD, FACS
Assistant Professor of Surgery (General Surgery)
BioDr. Delitto is a board certified complex general surgical oncologist with a focus on conditions of the liver, pancreas, and stomach. He is an assistant professor in Stanford Medicine’s Department of Surgery.
His education includes a decade of postgraduate training in complex general surgical oncology, as well as a PhD in immunology with an emphasis on cancer biology. He completed a clinical fellowship at Johns Hopkins University and continued his research at the postdoctoral level in the laboratory of Dr. Elizabeth Jaffee. His research focus is on advancing the field of cancer immunology and harnessing his findings to improve immunotherapies.
He was the principal investigator of two studies examining the immune response to pancreatic cancer, including one funded by the National Cancer Institute.
Dr. Delitto has presented the findings of his research at conferences such as the American Association for Cancer Research, Society for the Immunotherapy of Cancer, American Association of Immunologists, American College of Surgeons, Academic Surgical Congress and Pancreas Club. In addition to cancer immunology, he has also presented work focused on cancer cachexia, surgical outcomes, translational experimental models and a variety of other oncologic topics.
He has published original work in Nature Communications, the Journal of the National Cancer Institute, Cancer Research, Clinical Cancer Research, and other high impact journals. He is also a reviewer for Annals of Surgery, Scientific Reports, Surgery, Tumor Biology, Journal of Surgical Research, PLOS ONE, and the Journal of Translational Medicine.
Dr. Delitto has earned numerous honors related to clinical excellence, teaching and research. He is board certified by the American Board of Surgery and a member of the Society of Surgical Oncology, American Association for Cancer Research and American Association of Immunologists. -
Scott L. Delp, Ph.D.
Director, Wu Tsai Human Performance Alliance at Stanford, James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery
Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design medical products, and guide surgery. Imaging and health technology development. Discovering the principles of peak performance to advance human health. Human performance research. Wearable technologies, video motion capture, and machine learning to enable large-scale analysis.