Bio-X


Showing 821-830 of 1,074 Results

  • Jessica Rose

    Jessica Rose

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsDr. Rose's research investigates neuromuscular mechanisms underlying cerebral palsy (CP) and early brain and motor development in preterm children. Research examines gait biomechanics as well as neonatal brain microstructure on DTI, physiology and motor function in CP. Dr. Rose served on NIH Taskforce on Childhood Motor Disorders, AACPDM Research Committee, NIH Steering Committee on CDE for CP neuroimaging diagnostics, BOD of SBMT and serves on the IAACD Research Committee.

  • Sherri Rose

    Sherri Rose

    Professor of Health Policy

    BioSherri Rose, Ph.D. is a Professor of Health Policy and Director of the Health Policy Data Science Lab at Stanford University. Her research is centered on developing and integrating innovative statistical machine learning approaches to improve human health and health equity. Within health policy, Dr. Rose works on ethical algorithms in health care, risk adjustment, chronic kidney disease, and health program evaluation. She has published interdisciplinary projects across varied outlets, including Biometrics, Journal of the American Statistical Association, Journal of Health Economics, Health Affairs, and New England Journal of Medicine. In 2011, Dr. Rose coauthored the first book on machine learning for causal inference, with a sequel text released in 2018.

    Dr. Rose has been honored with an NIH Director’s Pioneer Award, NIH Director's New Innovator Award, the ISPOR Bernie J. O'Brien New Investigator Award, and multiple mid-career awards, including the Gertrude M. Cox Award. She is a Fellow of the American Statistical Association (ASA) and received the Mortimer Spiegelman Award, which recognizes the statistician under age 40 who has made the most significant contributions to public health statistics. In 2024, she received both the ASHEcon Willard G. Manning Memorial Award for Best Research in Health Econometrics and the ASA Outstanding Statistical Application Award. Her research has been featured in The New York Times, USA Today, and The Boston Globe. She was Co-Editor-in-Chief of the journal Biostatistics from 2019-2023.

  • Glenn Rosen

    Glenn Rosen

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine), Emeritus

    Current Research and Scholarly InterestsOur laboratory examines apoptotic and cell signaling pathways in cancer and lung disease. We are studying signaling pathways that regulate oxidative stress responses and cancer cell growth. Part of these studies focus on analysis of non-canonical transcription regulatory functions of the TERC and Tert components of telomerase in lung disease and cancer.

  • Michael J Rosen, MD, MSCI

    Michael J Rosen, MD, MSCI

    Stanford University Endowed Professor for Pediatric IBD and Celiac Disease

    BioDr. Rosen is a pediatric gastroenterologist and physician scientist who has been devoted to advancing inflammatory bowel disease (IBD) research and care for 25 years. He is the inaugural Stanford University Endowed Professor for Pediatric IBD and Celiac Disease. He is also Director of the Stanford Medicine Children’s Health Center for IBD and Celiac Disease, which has achieved nationally leading clinical outcomes under his direction. Dr. Rosen’s research expertise crosses mucosal immunology and epithelial biology and clinical and translational investigation. His NIH-funded laboratory has demonstrated the protective role for type 2 cytokines in chronic intestinal inflammation and advanced intestinal organoids as a model to study IBD. His clinical research has demonstrated how proactive therapeutic drug monitoring can be incorporated into clinical practice to optimize ant-TNF therapy treatment response. Dr. Rosen led the multicenter ARCH Study, which demonstrated the importance of intensified anti-TNF drug dosing in pediatric acute severe ulcerative colitis. Presently, he is co-principal investigator for the Crohn's & Colitis Foundation’s Cohort for Pediatric Translational and Clinical Research in IBD (CAPTURE IBD) which will advance precision medicine for children with IBD.

    After graduating from Duke University, Dr. Rosen attended Harvard Medical School, followed by pediatrics residency at Boston Children’s Hospital and Boston Medical Center. He pursued his pediatric gastroenterology fellowship at Vanderbilt University Medical Center, where he received a Master of Science in Clinical Investigation. He started his faculty career at Vanderbilt and then moved to Cincinnati Children’s Hospital and the University of Cincinnati College of Medicine. There he rose to Medical Director of the Schubert Martin IBD Center and Associate Director for Faculty Development in the Gastroenterology division before moving to Stanford in 2021. Dr. Rosen serves on the editorial board for Inflammatory Bowel Diseases and the National Scientific Advisory Committee for the Crohn’s & Colitis Foundation. Outside of work, Dr. Rosen enjoys spending time with his wife and two children at their activities, watching movies, downhill skiing, and getting outside.

  • Noah Rosenberg

    Noah Rosenberg

    Stanford Professor of Population Genetics and Society

    Current Research and Scholarly InterestsHuman evolutionary genetics, mathematical models in evolution and genetics, mathematical phylogenetics, statistical and computational genetics, theoretical population genetics

  • David Rosenthal

    David Rosenthal

    Professor of Pediatrics (Pediatric Cardiology)

    Current Research and Scholarly InterestsResearch interests include the study of Heart Failure, Cardiomyopathy and ventricular dysfunction in children, from a clinical perspective. Investigations include clinical trials of medications, cardiac resynchronization, and mechanical circulatory support.

  • Jason B. Ross, MD, PhD

    Jason B. Ross, MD, PhD

    Assistant Professor of Radiation Oncology (Radiation Therapy)

    Current Research and Scholarly InterestsMy laboratory studies studying normal, dysfunctional, and malignant stem cells in the context of aging, cancer, and cancer therapies.

  • Stephen J. Roth

    Stephen J. Roth

    Professor of Pediatrics (Cardiology)

    Current Research and Scholarly InterestsRandomized Therapeutic Trials in Pediatric Heart Disease, NIH/U01 GrantNo. HL68285 2001-2006.
    Heparin and the Reduction of Thrombosis (HART) Study. Pediatric Health Research Fund Award, Stanford Univ Sch of Medicine, 2005-2006.
    A Pilot Trial fo B-type Natriuretic Peptide for Promotion of Urine Output in Diuretic-Resistant Infants Following Cardiovascular Surgery.Pediatric Health Research Fund Award, Stanford Univ Sch of Medicine, 2005-2006.

  • Theodore Roth

    Theodore Roth

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsThe Roth Lab develops, applies, and translates scalable genetic manipulation technologies in primary human cells and complex in vivo tissue environments. Working with students, trainees, and staff with backgrounds across bioengineering, genetics, immunology, oncology, and pathology, the lab has developed CRISPR-All, a unified genetic perturbation language able to arbitrarily and combinatorially examine genetic perturbations across perturbation type and scale in primary human cells. Ongoing applications of CRISPR-All in the lab have revealed surprising capacities to synthetically engineer human cells beyond evolved cellular states. These new capacities to perturb human cell’s genetics beyond their evolved functionality drives ongoing work to understand the biology and therapeutic potential of synthetic cell state engineering - in essence learning how to build new human genes tailor made for a specific cell and specific environment to drive previously inaccessible therapeutic cellular functions.

  • Grant M. Rotskoff

    Grant M. Rotskoff

    Assistant Professor of Chemistry

    BioGrant Rotskoff studies the nonequilibrium dynamics of living matter with a particular focus on self-organization from the molecular to the cellular scale. His work involves developing theoretical and computational tools that can probe and predict the properties of physical systems driven away from equilibrium. Recently, he has focused on characterizing and designing physically accurate machine learning techniques for biophysical modeling. Prior to his current position, Grant was a James S. McDonnell Fellow working at the Courant Institute of Mathematical Sciences at New York University. He completed his Ph.D. at the University of California, Berkeley in the Biophysics graduate group supported by an NSF Graduate Research Fellowship. His thesis, which was advised by Phillip Geissler and Gavin Crooks, developed theoretical tools for understanding nonequilibrium control of the small, fluctuating systems, such as those encountered in molecular biophysics. He also worked on coarsegrained models of the hydrophobic effect and self-assembly. Grant received an S.B. in Mathematics from the University of Chicago, where he became interested in biophysics as an undergraduate while working on free energy methods for large-scale molecular dynamics simulations.

    Research Summary

    My research focuses on theoretical and computational approaches to "mesoscale" biophysics. Many of the cellular phenomena that we consider the hallmarks of living systems occur at the scale of hundreds or thousands of proteins. Processes like the self-assembly of organelle-sized structures, the dynamics of cell division, and the transduction of signals from the environment to the machinery of the cell are not macroscopic phenomena—they are the result of a fluctuating, nonequilibrium dynamics. Experimentally probing mesoscale systems remains extremely difficult, though it is continuing to benefit from advances in cryo-electron microscopy and super-resolution imaging, among many other techniques. Predictive and explanatory models that resolve the essential physics at these intermediate scales have the power to both aid and enrich the understanding we are presently deriving from these experimental developments.

    Major parts of my research include:

    1. Dynamics of mesoscale biophysical assembly and response.— Biophysical processes involve chemical gradients and time-dependent external signals. These inherently nonequilibrium stimuli drive supermolecular organization within the cell. We develop models of active assembly processes and protein-membrane interactions as a foundation for the broad goal of characterizing the properties of nonequilibrium biomaterials.

    2. Machine learning and dimensionality reduction for physical models.— Machine learning techniques are rapidly becoming a central statistical tool in all domains of scientific research. We apply machine learning techniques to sampling problems that arise in computational chemistry and develop approaches for systematically coarse-graining physical models. Recently, we have also been exploring reinforcement learning in the context of nonequilibrium control problems.

    3. Methods for nonequilibrium simulation, optimization, and control.— We lack well-established theoretical frameworks for describing nonequilibrium states, even seemingly simple situations in which there are chemical or thermal gradients. Additionally, there are limited tools for predicting the response of nonequilibrium systems to external perturbations, even when the perturbations are small. Both of these problems pose key technical challenges for a theory of active biomaterials. We work on optimal control, nonequilibrium statistical mechanics, and simulation methodology, with a particular interest in developing techniques for importance sampling configurations from nonequilibrium ensembles.