Bio-X


Showing 1-20 of 56 Results

  • Julia Palacios

    Julia Palacios

    Associate Professor of Statistics and of Biomedical Data Science

    BioDr. Palacios seek to provide statistically rigorous answers to concrete, data driven questions in evolutionary genetics and public health . My research involves probabilistic modeling of evolutionary forces and the development of computationally tractable methods that are applicable to big data problems. Past and current research relies heavily on the theory of stochastic processes, Bayesian nonparametrics and recent developments in machine learning and statistical theory for big data.

  • Daniel Palanker, PhD

    Daniel Palanker, PhD

    Professor of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsInteractions of electric field and light with biological cells and tissues and their applications to imaging, diagnostics, therapeutics and prosthetics, primarily in ophthalmology.
    Specific fields of interest:
    Electronic retinal prosthesis;
    Electronic enhancement of tear secretion;
    Electronic control of blood vessels;
    Non-damaging retinal laser therapy;
    Ultrafast laser surgery;
    Interferometric imaging of neural signals;
    Cell transplantation and retinal plasticity.

  • Theo Palmer

    Theo Palmer

    Professor of Neurosurgery, Emeritus

    Current Research and Scholarly InterestsMembers of the Palmer Lab study the biology of neural stem cells in brain development and in the adult. Our primary goal is to understand how genes and environment synergize in influencing stem cell behavior during development and how mild genetic or environmental risk factors for disease may synergize in their detrimental effects on brain development or in the risk of neuronal loss in age-related degenerative disease.

  • Stephen Palumbi

    Stephen Palumbi

    Jane and Marshall Steel Jr. Professor of Marine Sciences, Professor of Oceans and of Biology

    Current Research and Scholarly InterestsWe're interested in ecological, evolutionary, and conservation questions related to marine (and sometimes terrestrial) organisms and ecosystems. We use evolutionary genetics and molecular ecology techniques, and our fieldwork takes us all around the world. Currently, we're studying coral diversity, the adaptive potential of corals in response to climate change, the movement of organisms between marine reserves, genetic changes in abalone in response to environmental.

  • Alan C. Pao

    Alan C. Pao

    Associate Professor of Medicine (Nephrology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsWe are broadly interested in how the kidneys control salt, water, and electrolyte homeostasis in the body. Our disease focus is on kidney stone disease. We use cultured kidney cells, transgenic mice, human plasma/urine samples, and electronic health record data to study the pathogenesis of kidney stone disease. Our therapeutic focus is on the development of small molecule compounds that can be used for kidney stone prevention.

  • Peter Parham

    Peter Parham

    Professor of Structural Biology and, by courtesy, of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Parham laboratory investigates the biology, genetics, and evolution of MHC class I molecules and NK cell receptors.

  • Victoria Parikh

    Victoria Parikh

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioDr. Parikh is a clinician scientist who cares for patients with and studies inherited (genetic) cardiovascular disease. She is the director of the Stanford Center for Inherited Cardiovascular Disease (SCICD) which is one of the largest of its kind in the country. SCICD integrates clinical and basic science with the expert care of patients with genetic cardiovascular conditions (e.g., cardiomyopathies, arrhythmias and vascular diseases). It provides cutting edge care for thousands of patients and families across the lifespan and integrates medical, surgical and genetics care. Our team includes physicians, nurses, advanced practice providers, genetic counselors, exercise physiologists and scientists.

    Dr. Parikh's own clinical practice and laboratory are focused on the genetics of cardiomyopathies and their associated arrhythmogenic substrates. She completed clinical cardiology fellowship at Stanford School of Medicine and her medical residency at the University of California, San Francisco. Funded by multiple research grants from the NIH, her lab seeks to identify novel mechanisms and therapeutic technologies for genetic cardiomyopathy as well as better understand the natural histories of patients affected by these diseases.

  • Jon Park, MD, FRCSC

    Jon Park, MD, FRCSC

    Saunders Family Professor

    Current Research and Scholarly InterestsNon-fusion dynamic spinal stabilization, artificial disc technologies, and regenerative spinal technologies.

  • Karen J. Parker, PhD

    Karen J. Parker, PhD

    Truong-Tan Broadcom Endowed Professor and Professor, by courtesy, of Comparative Medicine

    Current Research and Scholarly InterestsThe Parker Lab conducts research on the biology of social functioning in monkeys, typically developing humans, and patients with social impairments.

  • Josef Parvizi, MD, PhD

    Josef Parvizi, MD, PhD

    Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    BioDr. Parvizi completed his medical internship at Mayo Clinic, neurology training at Harvard, and subspecialty training in clinical neurophysiology and epilepsy at UCLA before joining the Department of Neurology and Neurological Sciences at Stanford in 2007. Dr. Parvizi directs the Stanford Program for Medication Resistant Epilepsies and specializes in surgical treatments of intractable focal epilepsies. Dr. Parvizi is the principal investigator in the Laboratory of Behavioral and Cognitive Neuroscience, where he leads a team of investigators to study the human brain. http://med.stanford.edu/parvizi-lab.html.

  • Anca M. Pasca, MD

    Anca M. Pasca, MD

    Assistant Professor of Pediatrics

    Current Research and Scholarly InterestsThe research focus of the lab is to understand molecular mechanisms underlying neurodevelopmental disorders associated with premature birth, neonatal and fetal brain injury with the long-term goal of translating the lab’s findings into therapeutics. The research team employs a multidisciplinary approach involving genetics, molecular and developmental neurobiology, animal models and neural cells differentiated from patient-derived induced pluripotent stem (iPS) cells. In particular, the lab is using a powerful 3D human brain-region specific organoid system developed at Stanford (Nature Methods, 2015; Nature Protocols, 2018) to ask questions about brain injury during development.

    https://www.neopascalab.org/

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
    We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
    We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
    We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
    We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain.

  • Zara Patel, MD

    Zara Patel, MD

    Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    BioDr. Zara M. Patel is Director of Endoscopic Skull Base Surgery and a Professor of Otolaryngology and, by courtesy, of Neurosurgery at Stanford. She was born and raised in St. Louis, completed her MD at the Oregon Health and Sciences University in Portland, Oregon and completed her residency training in otolaryngology at Mount Sinai Medical Center in New York, NY. After pursuing fellowship training in rhinology and endoscopic skull base surgery at Stanford University, she was recruited to join the Emory University faculty in Atlanta in 2011. After four years, the rhinology division recruited her back to the West coast to rejoin the department here at Stanford University in 2015.

    Dr. Patel is an expert in advanced endoscopic sinus and skull base surgery. She treats patients with a wide variety of rhinologic complaints, including chronic sinus infection or inflammation, sinus disease that has failed medical therapy, sinus disease that has failed prior surgical therapy, cerebrospinal fluid leaks, benign and and malignant sinus and skull base tumors, as well as olfactory disorders.

    She has served as Chair of the Education Committee and Member of the Board of Directors for the American Rhinologic Society, is current Chair of the Rhinology and Allergy Education Committee for the American Academy of Otolaryngology - Head and Neck Surgery, and has developed a multitude of educational materials for both physicians and patients to help them better understand rhinologic disorders. She is passionate about educating patients to allow them to make the best decisions about their own care, leading to better outcomes.

    Dr. Patel has published widely in topics such as avoiding complications in endoscopic sinus surgery, chronic rhinosinusitis in the immunosuppressed patient population, new devices and techniques for endoscopic skull base surgery, and olfactory dysfunction. She continues to perform research in these areas, and is currently collaborating with neuroscientists and engineers to develop technology that she hopes will eventually help cure patients with smell loss, and potentially even help those with neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.

  • John M. Pauly

    John M. Pauly

    Reid Weaver Dennis Professor

    BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.

  • Kim Butts Pauly

    Kim Butts Pauly

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.

  • Jonathan Payne

    Jonathan Payne

    Dorrell William Kirby Professor, Senior Associate Dean for Faculty Affairs, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology,

    Current Research and Scholarly InterestsMy goal in research is to understand the interaction between environmental change and biological evolution using fossils and the sedimentary rock record. How does environmental change influence evolutionary and ecological processes? And conversely, how do evolutionary and ecological changes affect the physical environment? I work primarily on the marine fossil record over the past 550 million years.

  • Kabir Peay

    Kabir Peay

    Director of the Earth Systems Program, Associate Professor of Biology, of Earth System Science and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsOur lab studies the ecological processes that structure natural communities and the links between community structure and the cycling of nutrients and energy through ecosystems. We focus primarily on fungi, as these organisms are incredibly diverse and are the primary agents of carbon and nutrient cycling in terrestrial ecosystems. By working across multiple scales we hope to build a 'roots-to-biomes' understanding of plant-microbe symbiosis.

  • Donna Peehl, PhD

    Donna Peehl, PhD

    Professor (Research) of Urology, Emerita

    Current Research and Scholarly InterestsMy research focuses on the molecular and cellular biology of the human prostate. Developing realistic experimental models is a major goal, and primary cultures of prostatic epithelial and stromal cells are my main model system. Our discoveries are relevant to prevention, detection, diagnosis and treatment of benign and malignant prostatic diseases.