Bio-X


Showing 11-20 of 24 Results

  • Joyce Teng, MD, PhD

    Joyce Teng, MD, PhD

    Professor of Dermatology and, by courtesy, of Pediatrics

    BioJoyce Teng, MD, PhD is a professor in dermatology at Stanford University. She is affiliated with multiple hospitals in the area, including Lucile Salter Packard Children's Hospital (LPCH) at Stanford and Stanford Hospital and Clinics (SHC). She received her medical degree from Vanderbilt University School of Medicine and has been in practice for more than 12 years. She is one of the 6 pediatric dermatologists practicing at LPCH and one of 72 at SHC who specialize in Dermatology. She sees patients with rare genetic disorders, birthmarks, vascular anomalies and a variety of inflammatory skin diseases. She is also an experienced pediatric dermatological surgeon. Her research interests are drug discovery and novel therapy for skin disorders.

  • Avnesh Thakor

    Avnesh Thakor

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsInterventional Radiologists can access almost any part of the human body without the need for conventional open surgical techniques. As such, they are poised to change the way patients can be treated, given they can locally deliver drug, gene, cell and cell-free therapies directly to affected organs using image-guided endovascular, percutaneous, endoluminal, and even using device implantation approaches

  • Suzanne Tharin

    Suzanne Tharin

    Associate Professor of Neurosurgery
    On Partial Leave from 10/16/2023 To 06/30/2024

    Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Hawa Racine Thiam

    Hawa Racine Thiam

    Assistant Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsCellular Biophysical Mechanisms of Innate Immune Cells Functions

  • Robert Tibshirani

    Robert Tibshirani

    Professor of Biomedical Data Science and of Statistics

    Current Research and Scholarly InterestsMy research is in applied statistics and biostatistics. I specialize in computer-intensive methods for regression and classification, bootstrap, cross-validation and statistical inference, and signal and image analysis for medical diagnosis.

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.

  • Natalie Torok

    Natalie Torok

    Professor of Medicine (Gastroenterology and Hepatology)

    Current Research and Scholarly InterestsOur lab is focused on exploring the role of matrix remodeling in disease progression in metabolic dysfunction steatohepatitis (MASH)-related hepatocellular carcinoma and primary sclerosing cholangitis. Our goal is to uncover how biomechanical characteristics of the ECM affect mechano-sensation, and how these pathways could ultimately be targeted. We are also interested in aging and its effects on metabolic pathways in MASH and HCC.

  • Philip S. Tsao, PhD

    Philip S. Tsao, PhD

    Professor (Research) of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsOur primary interests are in the molecular underpinnings of vascular disease as well as assessing disease risk. In addition to targeted investigation of specific signaling molecules, we utilize global genomic analysis to identify gene expression networks and regulatory units. We are particularly interested in the role of microRNAs in gene expression pathways associated with disease.