Bio-X
Showing 1,041-1,060 of 1,074 Results
-
Joanna Wysocka
Lorry Lokey Professor and Professor of Developmental Biology
Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.
-
Tony Wyss-Coray, PhD
D. H. Chen Professor II
Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.
-
Yan Xia
Associate Professor of Chemistry
Current Research and Scholarly InterestsPolymer Chemistry, Microporous Polymer Membranes, Responsive Polymers, Degradable Polymers, Polymers with Unique Mechanical Behaviors, Polymer Networks, Organic Electronic Materials
-
Haopeng Xiao
Assistant Professor of Biochemistry
BioUnderstanding mechanisms of metabolic regulation in physiology and disease forms the basis for developing therapies to treat diseases in which metabolism is perturbed. We devise novel mass spectrometry (MS)-based proteomics technologies, combined with data science, to systematically discover mechanisms of metabolic regulation over protein function. Our strategies established the first tissue-specific landscape of protein cysteine redox regulation during aging, elucidating mechanisms of redox signaling in physiology that remained elusive for decades. We also leverage the genetic diversity of outbred populations to systematically annotate protein function and protein-metabolite co-regulation. The aim of our research program is to develop next-generation MS-based strategies to understand mechanisms of metabolic regulation in aging, metabolic disease, and cancer, and to use this knowledge as a basis to develop translational therapeutics.
-
Lei Xing
Jacob Haimson and Sarah S. Donaldson Professor and Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly Interestsartificial intelligence in medicine, medical imaging, Image-guided intervention, molecular imaging, biology guided radiation therapy (BGRT), treatment plan optimization
-
Grace Xiong, MD
Assistant Professor of Orthopaedic Surgery
BioDr. Xiong is a fellowship-trained orthopaedic surgeon at Stanford Health Care Orthopaedic Spine Center. She is also an Assistant Professor in the Department of Orthopaedic Surgery at Stanford University School of Medicine.
Dr. Xiong specializes in spine surgery. She treats conditions including disorders of the cervical, thoracic, and lumbar spine. These include spinal stenosis, myelopathy, herniated discs, spinal trauma, spinal tumors, and revision spine surgery. She aims to work with patients to understand their lifestyle and concerns and then offer a personalized treatment plan. Dr. Xiong specializes in both traditional open and minimally invasive approaches to help restore patient quality of life and mobility.
Dr. Xiong completed medical school at Stanford School of Medicine, her residency training at the Harvard Combined Orthopaedic Residency Program in Boston, MA, and spine surgery fellowship training at the Rothman Orthopaedic Institute in Philadelphia, PA.
Dr. Xiong’s research interests include reducing disparities in access to spinal care and investigating healthcare delivery to promote health equity. She also studies infection prevention in patients who have undergone spinal surgery and the treatment of patients who develop spontaneous spinal infections.
Dr. Xiong has published in many peer-reviewed journals, including The Spine Journal, Spine, The American Journal of Sports Medicine, and Clinical Orthopaedics and Related Research. She has written several book chapters on orthopaedic subjects and has presented research at conferences and meetings around the country, as well as in Canada and China.
Dr. Xiong is a member of the American Academy of Orthopaedic Surgeons, American Orthopaedic Association, and the North American Spine Society. -
Daniel Yamins
Associate Professor of Psychology and of Computer Science
Current Research and Scholarly InterestsOur lab's research lies at intersection of neuroscience, artificial intelligence, psychology and large-scale data analysis. It is founded on two mutually reinforcing hypotheses:
H1. By studying how the brain solves computational challenges, we can learn to build better artificial intelligence algorithms.
H2. Through improving artificial intelligence algorithms, we'll discover better models of how the brain works.
We investigate these hypotheses using techniques from computational modeling and artificial intelligence, high-throughput neurophysiology, functional brain imaging, behavioral psychophysics, and large-scale data analysis. -
Fan Yang
Associate Professor of Orthopaedic Surgery and of Bioengineering
Current Research and Scholarly InterestsOur lab’s mission is to develop therapies for regenerating human tissues lost due to diseases or aging, and to build tissue engineered 3D models for understanding disease progression and informing drug discovery. We invent biomaterials and engineering tools to elucidate and modulate biology, and also use biology to inform materials and engineering design. Our work is highly interdisciplinary, and is driven by unmet clinical needs or key gaps in biology.
-
Phillip C. Yang, MD
Professor of Medicine (Cardiovascular Medicine)
Current Research and Scholarly InterestsDr. Yang is a physician-scientist whose research interest focuses on clinical translation of the fundamental molecular and cellular processes of myocardial restoration. His research employs novel in vivo multi-modality molecular and cellular imaging technology to translate the basic innovation in cardiovascular pluripotent stem cell biologics. Dr. Yang is currently a PI on the NIH/NHLBI funded CCTRN UM1 grant, which is designed to conduct multi-center clinical trial on novel biological therapy.
-
Priscilla Li-ning Yang
Professor of Microbiology and Immunology
Current Research and Scholarly InterestsWe apply chemical biology approaches to study fundamental virological processes and to develop antivirals with novel mechanisms of action.
-
Samuel Yang, MD, FACEP
Professor of Emergency Medicine (Adult Clinical/Academic)
Current Research and Scholarly InterestsDr. Yang's research is focused on bridging the translational gap at the interface of molecular biology, biochemistry, genome science, engineering, and acute care medicine. The investigative interest of the Yang lab falls within the general theme of developing integrative systems-level approaches for precision diagnostics, as well as data driven knowledge discoveries, to improve the health outcome and our understanding of complex critical illnesses. Using acute infectious disease models with complex host-pathogen dynamics, the goals of the Yang lab are divided into 3 areas:
1) Developing high-content, near-patient, diagnostic systems for rapid, unbiased pathogen detection and characterization to personalize treatment options and duration.
2) Integrating multi-omics molecular and phenotypic data layers with novel computational approaches into advanced diagnostics and predictive analytics for acute infections.
3) Understanding the biological roles of the noncanonical structures of extracellular nucleic acids in the contexts of neutrophil extracellular traps and biofilms. -
Yanmin Yang
Associate Professor of Neurology and Neurological Sciences (Neurology Research Faculty)
Current Research and Scholarly InterestsElucidate biological functions of cytoskeletal associated proteins in neurons. Define the cellular and molecular mechanisms underlying neurodegeneration in null mice.
-
Yunzhi Peter Yang
Professor of Orthopaedic Surgery and, by courtesy, of Materials Science and Engineering and of Bioengineering
Current Research and Scholarly InterestsYang lab's research interests are in the areas of bio-inspired biomaterials, medical devices, and 3D printing approaches for re-creating a suitable microenvironment for cell growth and tissue regeneration for musculoskeletal disease diagnosis and treatment, including multiple tissue healing such as rotator cuff injury, orthopedic diseases such as osteoporosis and osteonecrosis, and orthopedic traumas such as massive bone and muscle injuries.
-
Jiangbin Ye
Assistant Professor of Radiation Oncology
On Leave from 01/01/2025 To 06/30/2025Current Research and Scholarly InterestsOne hallmark of cancer is that malignant cells modulate metabolic pathways to promote cancer progression. My professional interest is to investigate the causes and consequences of the abnormal metabolic phenotypes of cancer cells in response to microenvironmental stresses such as hypoxia and nutrient deprivation, with the prospect that therapeutic approaches might be developed to target these metabolic pathways to improve cancer treatment.
-
Jason Yeatman
Associate Professor of Pediatrics (Developmental-Behavioral Pediatrics), of Education and of Psychology
BioDr. Jason Yeatman is an Associate Professor in the Graduate School of Education and Department of Psychology at Stanford University and the Division of Developmental and Behavioral Pediatrics at Stanford University School of Medicine. Dr. Yeatman completed his PhD in Psychology at Stanford where he studied the neurobiology of literacy and developed new brain imaging methods for studying the relationship between brain plasticity and learning. After finishing his PhD, he took a faculty position at the University of Washington’s Institute for Learning and Brain Sciences before returning to Stanford.
As the director of the Brain Development and Education Lab, the overarching goal of his research is to understand the mechanisms that underlie the process of learning to read, how these mechanisms differ in children with dyslexia, and to design literacy intervention programs that are effective across the wide spectrum of learning differences. His lab employs a collection of structural and functional neuroimaging measurements to study how a child’s experience with reading instruction shapes the development of brain circuits that are specialized for this unique cognitive function. -
Ellen Yeh
Associate Professor of Pathology and of Microbiology and Immunology
Current Research and Scholarly InterestsOur research program focuses on understudied microbial ecology as solutions for planet health. We select organisms with important functional traits to understand their evolution, role in the environment, and potential for bioengineering toward sustainability solutions. We are currently working on nitrogen-fixing cyanobacteria and algae, genetic screens in diatoms, and algal biofuels.
-
David C. Yeomans
Associate Professor of Anesthesiology, Perioperative and Pain Medicine, Emeritus
Current Research and Scholarly InterestsPhysiology of different pain types; Biomarkers of pain and inflammation; Gene Therapy for Pain
-
Serena Yeung-Levy
Assistant Professor of Biomedical Data Science and, by courtesy, of Electrical Engineering and of Computer Science
BioDr. Serena Yeung-Levy is an Assistant Professor of Biomedical Data Science and, by courtesy, of Computer Science and of Electrical Engineering at Stanford University. Her research focus is on developing artificial intelligence and machine learning algorithms to enable new capabilities in biomedicine and healthcare. She has extensive expertise in deep learning and computer vision, and has developed computer vision algorithms for analyzing diverse types of visual data ranging from video capture of human behavior, to medical images and cell microscopy images.
Dr. Yeung-Levy leads the Medical AI and Computer Vision Lab at Stanford. She is affiliated with the Stanford Artificial Intelligence Laboratory, the Clinical Excellence Research Center, and the Center for Artificial Intelligence in Medicine & Imaging. She is also a Chan Zuckerberg Biohub Investigator and has served on the NIH Advisory Committee to the Director Working Group on Artificial Intelligence. -
Paul Yock, MD
Martha Meier Weiland Professor in the School of Medicine and Professor of Bioengineering, Emeritus
Current Research and Scholarly InterestsHealth technology innovation using the Biodesign process: a systematic approach to the design of biomedical technologies based on detailed clinical and economic needs characterization. New approaches for interdisciplinary training of health technology innovators, including processes for identifying value opportunities in creating new technology-based approaches to health care.