Sarafan ChEM-H
Showing 61-80 of 141 Results
-
Marie Hollenhorst, MD, PhD
Basic Life Research Scientist, Sarafan ChEM-H
BioDr. Hollenhorst is a physician and scientist with expertise in non-malignant hematology, transfusion medicine, and chemical biology. Dr. Hollenhorst values the one-on-one relationships that she forms with her patients, and strives to deliver the highest quality of care for individuals with blood diseases. Her experience caring for patients drives her to ask scientific questions in the laboratory, where she aims to bring a chemical approach to the study of non-malignant blood disease.
Dr. Hollenhorst pursued combined MD and PhD training at Harvard University, where she received a PhD in Chemical Biology under the mentorship of Professor Christopher T Walsh. She subsequently completed a residency in Internal Medicine at Brigham and Women's Hospital, a fellowship in Transfusion Medicine at Harvard Medical School, and a fellowship in Hematology at Stanford.
Dr. Hollenhorst has an interest in the biology of platelets, which are cellular fragments that help the blood to maintain a healthy balance between bleeding and clotting. Working in the laboratory of Professor Carolyn Bertozzi of Stanford Chemistry, Dr. Hollenhorst is studying sugar molecules found on the surface of platelets that are important in controlling their function and lifespan.
Dr. Hollenhorst's research is supported by an NIH K99 Career Pathway to Independence in Blood Science Award for Physician-Scientists, a Stanford Chemistry, Engineering & Medicine for Human Health Physician-Scientist Fellowship, and a National Blood Foundation Early-Career Scientific Research Grant. -
Michael R. Howitt
Assistant Professor of Pathology and of Microbiology and Immunology
Current Research and Scholarly InterestsOur lab is broadly interested in how intestinal microbes shape our immune system to promote both health and disease. Recently we discovered that a type of intestinal epithelial cell, called tuft cells, act as sentinels stationed along the lining of the gut. Tuft cells respond to microbes, including parasites, to initiate type 2 immunity, remodel the epithelium, and alter gut physiology. Surprisingly, these changes to the intestine rely on the same chemosensory pathway found in oral taste cells. Currently, we aim to 1) elucidate the role of specific tuft cell receptors in microbial detection. 2) To understand how protozoa and bacteria within the microbiota impact host immunity. 3) Discover how tuft cells modulate surrounding cells and tissue.
-
KC Huang
Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsHow do cells determine their shape and grow?
How do molecules inside cells get to the right place at the right time?
Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations. -
Ngan F. Huang
Associate Professor of Cardiothoracic Surgery (Cardiothoracic Surgery Research) and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsDr. Huang's laboratory aims to understand the chemical and mechanical interactions between extracellular matrix (ECM) proteins and pluripotent stem cells that regulate vascular and myogenic differentiation. The fundamental insights of cell-matrix interactions are applied towards stem cell-based therapies with respect to improving cell survival and regenerative capacity, as well as engineered vascularized tissues for therapeutic transplantation.
-
Possu Huang
Assistant Professor of Bioengineering
Current Research and Scholarly InterestsProtein design: molecular engineering, method development and novel therapeutics
-
Adrian Hugenmatter
Director of Protein Engineering
BioDr. Adrian Hugenmatter joined ChEM-H as Director of Protein Engineering in 2021. In his role, Dr. Hugenmatter heads the Protein Engineering Laboratory at the Nucleus and is responsible for the development of therapeutic proteins at the Innovative Medicines Accelerator (IMA). Dr. Hugenmatter obtained his PhD in the laboratory of Prof. Donald Hilvert at the Swiss Federal Institute of Technology in Zurich (ETH Zurich, Switzerland), where he gained initial experience in the fields of enzymology, antibody engineering and directed evolution. Fascinated by protein engineering, he moved to the laboratory of Prof. Dan Tawfik at the Weizmann Institute of Science (Israel), where he studied molecular evolution and its application in protein design. Dr. Hugenmatter then worked for more than a decade as a researcher and team leader at Roche. During this time, he was involved in the development and optimization of several antibody lead candidates for therapeutic applications in neuroscience and oncology.
-
Peter K. Jackson
Professor of Microbiology and Immunology (Baxter Labs) and of Pathology
On Partial Leave from 02/01/2025 To 01/31/2026Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .
-
Christine Jacobs-Wagner
Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology
BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.
She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.
Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease -
Daniel Jarosz
Associate Professor of Chemical and Systems Biology and of Developmental Biology
Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.
-
Paul A. Khavari, MD, PhD
Carl J. Herzog Professor of Dermatology in the School of Medicine
Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.
-
Chaitan Khosla
Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry
Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.
For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.
For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine. -
Peter S. Kim
Virginia and D. K. Ludwig Professor of Biochemistry
Current Research and Scholarly InterestsOur research focuses on developing new strategies for vaccine creation. We also aim to generate vaccines targeting infectious agents that have eluded efforts to date. We integrate experimental approaches with protein language models to guide artificial evolution and enable efficient antibody and protein engineering. Our interdisciplinary approach aims to address critical global health challenges.
-
Karla Kirkegaard
Violetta L. Horton Professor and Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.
-
Bruce Koch, Ph.D.
Director of High-Throughput Screening
Current Role at StanfordDirector, ChEM-H/CSB High Throughput Screening Group
Staff Lead, IMA HTS Module
Adviser to the SPARK Program -
Eric Kool
George A. and Hilda M. Daubert Professor of Chemistry
Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
• Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
• Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation -
Tobias Lanz
Assistant Professor of Medicine (Immunology and Rheumatology)
BioTobias Lanz, MD is an Assistant Professor at the Institute for Immunity, Transplantation, and Infection and the Division of Immunology and Rheumatology at Stanford. His research focuses on B cell biology in neuroimmunological diseases and rheumatic diseases with neurological manifestations. He uses high-throughput screening technologies, and methods from structural and cell biology to identify new autoantigens and to understand how certain self-reactive B cells escape tolerance mechanisms. He is particularly interested in molecular mechanisms that explain the association between Epstein Barr Virus (EBV) and autoimmunity.
Tobias went to medical school at the Eberhard Karls University in Tübingen, Germany and at the University College of London. He wrote his MD thesis at Dr. Michael Platten's laboratory at the Hertie Institute for Clinical Brain Research in Tübingen, Germany before joining Dr. Lawrence Steinman’s neuroimmunological laboratory at Stanford as a research scholar. After medical school he pursued his scientific and clinical training at the German Cancer Research Center (DKFZ) and the Department of Neurology at the University Hospital in Heidelberg, Germany. In 2015 he joined Dr. William Robinson’s lab at Stanford, where he investigated environmental triggers of autoimmunity, including viruses and milk consumption. In his most recent work, he characterized the B cell repertoire in the spinal fluid of patients with multiple sclerosis (MS) and identified molecular mimicry between EBV EBNA1 and the glial cellular adhesion molecule GlialCAM as a driver of neuroinflammation (Lanz et al., Nature, 2022). His long term objective is to leverage these newly discovered mechanistic insights to develop next-generation biomarkers and therapeutics for autoimmune diseases. -
Jin Billy Li
Professor of Genetics
Current Research and Scholarly InterestsThe Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.
-
Lingyin Li
Professor of Biochemistry
BioDr. Li is a professor in the Biochemistry Department and ChEM-H Institute at Stanford. She is also a core investigator of the Arc Institute. Her lab works on understanding biochemical mechanisms of the immunotransmitter cGAMP and harnessing it to treat cancer and autoimmunity. She majored in chemistry at University of Science and Technology of China and graduated with a B. En in 2003. She then trained with Dr. Laura Kiessling, a pioneer in chemical biology, at University of Wisconsin-Madison and graduated with a Ph.D in chemistry in 2010. She obtained her postdoctoral training with Dr. Timothy Mitchison at Harvard Medical School, who introduced her to the field of chemical immunology. She started her lab at Stanford in 2015.
-
Michael Lin
Professor of Neurobiology and of Bioengineering
Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.
-
Kyle Loh
Assistant Professor of Developmental Biology (Stem Cell)
BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel cells in a Petri dish from embryonic stem cells. Each of these human cells could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to developmental and stem cell biology, we have an emerging interest in exploring deadly biosafety level 4 viruses together with our collaborators.
Kyle attended the County College of Morris and Rutgers, and received his Ph.D. from Stanford (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute for Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship.