Sarafan ChEM-H


Showing 21-27 of 27 Results

  • David Solow-Cordero

    David Solow-Cordero

    Associate Director, High-Throughput Screening, Innovative Medicines Accelerator (IMA)

    Current Role at StanfordAssociate Director, High-Throughput Screening Knowledge Center, , Sarafan ChEM-H and Innovative Medicine Accelerator (IMA)

    This high-throughput screening (HTS) laboratory allows Stanford researchers and others to discover novel modulators of targets that otherwise would not be practical in industry. The center incorporates instrumentation (purchased with NCRR NIH Instrumentation grant numbers S10RR019513, S10RR026338, S10OD025004, and S10OD026899), databases, compound libraries, and personnel whose previous sole domains were in industry.

    Among our instrumentation are a fully automated Molecular Devices ImageXpress Micro Confocal High-Content fluorescence microplate imager, with live cell, fluidics and phase contrast options, an Echo 655 Acoustic Dispense, a Thermo integrated HTS robotic system, a Caliper Life Sciences SciClone ALH3000 and an Agilent Bravo microplate liquid handler, and the BMG Clariostarplus, Tecan Infinite M1000 and M1000 PRO and Molecular Devices FlexStation II 384 fluorescence, luminescence and absorbance multimode microplate readers.

    We have over 180,000 small molecules for compound screens, 15,000 cDNAs for genomic screens, and whole genome siRNA libraries targeting the human genome (the siARRAY whole human genome siRNA library from Dharmacon, targeting 21,000 human genes) and the mouse genome (Qiagen mouse whole genome siRNA set V1 against 22,124 genes).

    The HTSKC main screening lab is located in ChEM-H W008, the cell-based assay development lab is located in CCSR Room 0133-North Wing, between the Transgenic Mouse Facility, and the Stanford Genomics Facility.

  • Aaron F. Straight

    Aaron F. Straight

    Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.

  • Katrin J Svensson

    Katrin J Svensson

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsMolecular metabolism
    Protein biochemistry
    Cell biology and function
    Animal physiology

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProgram Overview

    The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
    Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
    To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
    To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
    More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.