Independent Labs, Institutes, and Centers (Dean of Research)


Showing 11-20 of 87 Results

  • Victoria Parikh

    Victoria Parikh

    Associate Professor of Medicine (Cardiovascular Medicine)

    BioDr. Parikh is a clinician scientist who cares for patients with and studies inherited (genetic) cardiovascular disease. She is the director of the Stanford Center for Inherited Cardiovascular Disease (SCICD) which is one of the largest of its kind in the country. SCICD integrates clinical and basic science with the expert care of patients with genetic cardiovascular conditions (e.g., cardiomyopathies, arrhythmias and vascular diseases). It provides cutting edge care for thousands of patients and families across the lifespan and integrates medical, surgical and genetics care. Our team includes physicians, nurses, advanced practice providers, genetic counselors, exercise physiologists and scientists.

    Dr. Parikh's own clinical practice and laboratory are focused on the genetics of cardiomyopathies and their associated arrhythmogenic substrates. She completed clinical cardiology fellowship at Stanford School of Medicine and her medical residency at the University of California, San Francisco. Funded by multiple research grants from the NIH, her lab seeks to identify novel mechanisms and therapeutic technologies for genetic cardiomyopathy as well as better understand the natural histories of patients affected by these diseases.

  • David J. Park, MD, PhD, FCNS

    David J. Park, MD, PhD, FCNS

    Clinical Assistant Professor, Neurosurgery

    Current Research and Scholarly InterestsThe goal of our Laboratory is to improve patients’ care and outcomes by analyzing clinical data from thousands of patients treated at our institution. Our current primary areas of interest are benign tumors, brain and spine metastases, and neurogenetic disorders.
    Our lab is led by Dr. Steven D. Chang and Dr. David J. Park and proudly hosts talented young clinical scientists from around the world.
    Link: https://med.stanford.edu/neurosurgery/research/NeuroOncLab.html

  • Jon Park, MD, FRCSC

    Jon Park, MD, FRCSC

    Saunders Family Professor

    Current Research and Scholarly InterestsNon-fusion dynamic spinal stabilization, artificial disc technologies, and regenerative spinal technologies.

  • Karen J. Parker, PhD

    Karen J. Parker, PhD

    Truong-Tan Broadcom Endowed Professor and Professor, by courtesy, of Comparative Medicine

    Current Research and Scholarly InterestsThe Parker Lab conducts research on the biology of social functioning in monkeys, typically developing humans, and patients with social impairments.

  • Josef Parvizi, MD, PhD

    Josef Parvizi, MD, PhD

    Professor of Neurology and Neurological Sciences (Adult Neurology) and, by courtesy, of Neurosurgery

    BioDr. Parvizi completed his medical internship at Mayo Clinic, neurology training at Harvard, and subspecialty training in clinical neurophysiology and epilepsy at UCLA before joining the Department of Neurology and Neurological Sciences at Stanford in 2007. Dr. Parvizi directs the Stanford Program for Medication Resistant Epilepsies and specializes in surgical treatments of intractable focal epilepsies. Dr. Parvizi is the principal investigator in the Laboratory of Behavioral and Cognitive Neuroscience, where he leads a team of investigators to study the human brain. http://med.stanford.edu/parvizi-lab.html.

    Epilepsy patient story: https://www.youtube.com/watch?v=HXy-gXg0t94&t=3s

  • Anca M. Pasca, MD

    Anca M. Pasca, MD

    Assistant Professor of Pediatrics

    Current Research and Scholarly InterestsThe research focus of the lab is to understand molecular mechanisms underlying neurodevelopmental disorders associated with premature birth, neonatal and fetal brain injury with the long-term goal of translating the lab’s findings into therapeutics. The research team employs a multidisciplinary approach involving genetics, molecular and developmental neurobiology, animal models and neural cells differentiated from patient-derived induced pluripotent stem (iPS) cells. In particular, the lab is using a powerful 3D human brain-region specific organoid system developed at Stanford (Nature Methods, 2015; Nature Protocols, 2018) to ask questions about brain injury during development.

    https://www.neopascalab.org/

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
    We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
    We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
    We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
    We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain.

  • Chirag Patel, MD, PhD

    Chirag Patel, MD, PhD

    Member, Cardiovascular Institute

    Current Research and Scholarly InterestsNeuro-oncology, Clinical Trials, Tumor Treating Fields (TTFields), Molecular/PET Imaging, Neuroimaging, Immunotherapy, Big Data Analysis

  • Michele Lanpher Patel

    Michele Lanpher Patel

    Instructor, Medicine - Stanford Prevention Research Center

    BioMichele L. Patel, PhD is an Instructor in the Stanford University School of Medicine. Her research focuses on optimizing digital health interventions for treating & preventing obesity. Digital interventions have potential for serving as first-line obesity treatments given their accessibility, low cost, and personalization. Dr. Patel is interested in testing innovative strategies to enhance engagement in these digital interventions. Leveraging an 'intervention optimization' paradigm (the Multiphase Optimization Strategy, MOST), she examines the unique and combined weight loss effects of intervention strategies. Optimizing interventions facilitates maximizing clinical impact while minimizing patient burden and healthcare costs.

    Dr. Patel received a career development award from NIH (K23; 2022-2027). This work investigates the most potent combination of self-monitoring strategies in a behavioral weight loss intervention for 176 adults with overweight or obesity. Dr. Patel is interested in using digital tools such as commercial apps, wearable devices, and text messaging to improve access to and engagement in treatment.

    Dr. Patel received her BA in psychology from Duke University in 2010 and her PhD in clinical psychology from Duke in 2018. She completed her clinical internship at the VA Palo Alto, specializing in behavioral medicine, and her postdoctoral fellowship at the Stanford Prevention Research Center.

    Primary Research Interests:
    -- Conducting clinical trials to optimize & evaluate digital health interventions for obesity
    -- Improving engagement in self-monitoring and other behavioral intervention strategies
    -- Identifying psychosocial factors (e.g., health literacy, stress) that impact treatment success

    Methods:
    -- RCTs, including factorial designs
    -- embedded trials (study-within-a-trial)
    -- systematic reviews
    -- signal detection analysis
    -- mixed methods & qualitative methods