School of Engineering


Showing 1-10 of 40 Results

  • Monther Abu-Remaileh

    Monther Abu-Remaileh

    Assistant Professor of Chemical Engineering

    BioThe Abu-Remaileh Lab is interested in identifying novel pathways that enable cellular and organismal adaptation to metabolic stress and changes in environmental conditions. We also study how these pathways go awry in human diseases such as cancer, neurodegeneration and metabolic syndrome, in order to engineer new therapeutic modalities.

    To address these questions, our lab uses a multidisciplinary approach to study the biochemical functions of the lysosome in vitro and in vivo. Lysosomes are membrane-bound compartments that degrade macromolecules and clear damaged organelles to enable cellular adaptation to various metabolic states. Lysosomal function is critical for organismal homeostasis—mutations in genes encoding lysosomal proteins cause severe human disorders known as lysosomal storage diseases, and lysosome dysfunction is implicated in age-associated diseases including cancer, neurodegeneration and metabolic syndrome.

    By developing novel tools and harnessing the power of metabolomics, proteomics and functional genomics, our lab will define 1) how the lysosome communicates with other cellular compartments to fulfill the metabolic demands of the cell under various metabolic states, 2) and how its dysfunction leads to rare and common human diseases. Using insights from our research, we will engineer novel therapies to modulate the pathways that govern human disease.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor in the School of Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She is the Department Chair of Chemical Engineering from 2018. She is a member of the National Academy of Engineering and National Academy of Inventors. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 400 refereed publications and more than 60 US patents. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies. She is Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE. She was a recipient of the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011, and was selected by Phoenix TV, China as 2010 Most influential Chinese in the World-Science and Technology Category. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001. She has been selected in 2002 by the American Chemical Society Women Chemists Committee as one of the twelve Outstanding Young Woman Scientist who is expected to make a substantial impact in chemistry during this century. She is also selected by MIT Technology Review magazine in 2003 as one of the top 100 young innovators for this century. She has been selected as one of the recipients of Stanford Terman Fellow and has been appointed as the Robert Noyce Faculty Scholar, Finmeccanica Faculty Scholar and David Filo and Jerry Yang Faculty Scholar.

  • Stacey Bent

    Stacey Bent

    Vice Provost for Graduate Education and Postdoctoral Affairs, Jagdeep and Roshni Singh Professor in the School of Engineering, and Professor, by courtesy, of Materials Science & Engineering and of Electrical Engineering

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Matteo Cargnello

    Matteo Cargnello

    Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering

    BioMatteo Cargnello is Assistant Professor of Chemical Engineering and Terman Faculty Fellow. His group research interests are in the preparation and use of uniform and tailored materials for heterogeneous catalysis and photocatalysis and the technological exploitation of nanoparticles and nanocrystals. Reactions of interest are related to sustainable energy generation and use, control of emissions of greenhouse gases, and better utilization of abundant building blocks (methane, biomass). Dr. Cargnello received his Ph.D. in Nanotechnology in 2012 at the University of Trieste (Italy) and he was then a post-doctoral scholar in the Chemistry Department at the University of Pennsylvania (Philadelphia) before joining the Faculty at Stanford. He is the recipient of the ENI Award Debut in Research 2013, the European Federation of Catalysis Societies Award as best European Ph.D. thesis in catalysis in 2013, and the Sloan Fellowship in 2018.

  • Lynette Cegelski

    Lynette Cegelski

    Associate Professor of Chemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research program integrates chemistry, biology, and physics to investigate the assembly and function of macromolecular and whole-cell systems. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We are inspired by the need for new and unconventional approaches to solve these outstanding problems and to drive the discovery of new therapeutics for human disease.

    Our approach is different from the more conventional protein-structure determinations of structural biology. We employ biophysical and biochemical tools, and are designing new strategies using solid-state NMR spectroscopy to examine assemblies such as amyloid fibers, bacterial cell walls, whole cells, and biofilms. We would like to understand at a molecular and atomic level how bacteria self-assemble extracellular structures, including functional amyloid fibers termed curli, and how bacteria use such building blocks to construct organized biofilm architectures. We also employ a chemical genetics approach to recruit small molecules as tools to interrupt and interrogate the temporal and spatial events during assembly processes and to develop new strategies to prevent and treat infectious diseases. Overall, our approach is multi-pronged and provides training opportunities for students interested in research at the chemistry-biology interface.

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Shriram Chair of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering

    Current Research and Scholarly InterestsMy lab is deeply interested in understand how living cells sense and respond to mechanical stimuli.