School of Engineering
Showing 1-10 of 50 Results
-
Xiangmeng (Shawn) Cai
Ph.D. Student in Bioengineering, admitted Summer 2022
BioI'm a Ph.D. student in bioengineering. My research interests include using engineering and computational methods to probe, measure, perturb, and predict chromosome organization and epigenetic dynamics.
-
David Camarillo
Associate Professor of Bioengineering and, by courtesy, of Neurosurgery and of Mechanical Engineering
BioDavid B. Camarillo is Associate Professor of Bioengineering, (by courtesy) Mechanical Engineering and Neurosurgery at Stanford University. Dr. Camarillo holds a B.S.E in Mechanical and Aerospace Engineering from Princeton University, a Ph.D. in Mechanical Engineering from Stanford University and completed postdoctoral fellowships in Biophysics at the UCSF and Biodesign Innovation at Stanford. Dr. Camarillo worked in the surgical robotics industry at Intuitive Surgical and Hansen Medical, before launching his laboratory at Stanford in 2012. His current research focuses on precision human measurement for multiple clinical and physiological areas including the brain, heart, lungs, and reproductive system. Dr. Camarillo has been awarded the Hellman Fellowship, the Office of Naval Research Young Investigator Program award, among other honors including multiple best paper awards in brain injury and robotic surgery. His research has been funded by the NIH, NSF, DoD, as well as corporations and private philanthropy. His lab’s research has been featured on NPR, the New York Times, The Washington Post, Science News, ESPN, and TED.com as well as other media outlets aimed at education of the public.
-
Leyre Caracuel
Assistant Director of the Graduate Affairs, Bioengineering
Current Role at StanfordAssistant Director of Graduate Affairs
-
Anthony Cesnik
Postdoctoral Scholar, Bioengineering
BioI am focused on advancing our understanding of biology at the proteoform level, peering into the cellular machinery in a way that reveals precisely which molecular forms of proteins are acting in biological processes and systems. Recently, I have been working in Emma Lundberg’s lab on understanding how the expression of these molecules varies between individual cells in space and time. Emma Lundberg’s group has a wealth of experience in using microscopy to yield biological images that paint a picture of this cell-to-cell heterogeneity of protein expression information, and joining her lab has deepened my expertise in integrating datasets to perform innovative analyses of single-cell protein expression. I hope to extend this towards analyzing single-cell proteoform expression, understanding the heterogeneity and flux between these proteoforms in space and time, and digging into the fundamental insights about human biology these data may reveal.