School of Engineering
Showing 191-200 of 205 Results
-
Hajime Fujita
Ph.D. Student in Bioengineering, admitted Autumn 2022
Masters Student in Bioengineering, admitted Spring 2024Current Research and Scholarly InterestsBiosensors
-
Gerald Fuller
Fletcher Jones Professor in the School of Engineering
BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).
The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.
There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films. -
Sydney Fultz-Waters
Ph.D. Student in Materials Science and Engineering, admitted Summer 2024
Masters Student in Materials Science and Engineering, admitted Autumn 2023BioSydney is a Ph.D student in the Materials Science and Engineering department at Stanford University, co-advised by Prof. Shan X. Wang and Prof. Eric Pop. She received her B.S. in Materials Engineering from California Polytechnic State University, San Luis Obispo in 2023. Her research focuses on low dimensional magnetic materials for electronic applications.