School of Engineering


Showing 1-6 of 6 Results

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Sarah Heilshorn

    Sarah Heilshorn

    Associate Professor of Materials Science and Engineering and, by courtesy, of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProtein engineering
    Tissue engineering
    Regenerative medicine
    Biomaterials

  • Guosong Hong

    Guosong Hong

    Assistant Professor of Materials Science and Engineering

    BioGuosong Hong's research aims to bridge materials science and neuroscience, and blur the distinction between the living and non-living worlds by developing novel neuroengineering tools to interrogate and manipulate the brain in a minimally invasive way.

    Guosong received his Ph.D. degree in chemistry from Stanford University in 2014 under the advice of Prof. Hongjie Dai. His Ph.D. research focused on the development of a new fluorescence imaging method in the second near-infrared window (NIR-II window, 1,000-1,700 nm) to afford deep-tissue penetration in the brain and other biological tissues. During his postdoctoral training at Harvard University with Prof. Charles Lieber, Guosong developed tissue-like mesh electronics neural probes to interrogate the brain and the retina with chronic stability, and is a recipient of the American Heart Association (AHA) Postdoctoral Fellowship and the NIH Pathway to Independence Award (K99/R00). Guosong joined the Stanford faculty in September 2018, and is an assistant professor of Materials Science and Engineering, and the Wu Tsai Neurosciences Institute.

  • Robert Huggins

    Robert Huggins

    Professor of Materials Science and Engineering, Emeritus

    BioProfessor Huggins joined Stanford as Assistant Professor in 1954, was promoted to Associate Professor in 1958, and to Professor in 1962.

    His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, ferromagnetism, mechanical behavior of solids, crystal growth, and a wide variety of topics in physical metallurgy, ceramics, solid state chemistry and electrochemistry. Primary attention has recently been focused on the development of understanding of solid state ionic phenomena involving solid electrolytes and mixed ionic-electronic conducting materials containing atomic or ionic species such as lithium, sodium or oxygen with unusually high mobility, as well as their use in novel battery and fuel cell systems, electrochromic optical devices, sensors, and in enhanced heterogeneous catalysis. He was also involved in the development of the understanding of the key role played by the phase composition and oxygen stoichiometry in determining the properties of high temperature oxide superconductors.

    Topics of particular recent interest have been related to energy conversion and storage, including hydrogen transport and hydride formation in metals, alloys and intermetallic compounds, and various aspects of materials and phenomena related to advanced lithium batteries.

    He has over 400 professional publications, including three books; "Advanced Batteries", published by Springer in 2009, "Energy Storage", published by Springer in 2010, and Energy Storage, Second Edition in 2016.