School of Engineering
Showing 111-120 of 519 Results
-
Jonathan Fan
Associate Professor of Electrical Engineering
Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.
-
Charbel Farhat
Vivian Church Hoff Professor of Aircraft Structures and Professor of Aeronautics and Astronautics
Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design, analysis, and digital twinning of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on reliable autonomous carrier landing in rough seas; dissipation of vertical landing energies through structural flexibility; nonlinear aeroelasticity of N+3 aircraft with High Aspect Ratio (HAR) wings; pulsation and flutter of a parachute; pendulum motion in main parachute clusters; coupled fluid-structure interaction (FSI) in supersonic inflatable aerodynamic decelerators for Mars landing; flight dynamics of hypersonic systems and their trajectories; and advanced digital twinning. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-component, multi-physics problems; discrete-event-free embedded boundary methods for CFD and FSI; efficient Bayesian optimization using physics-based surrogate models; modeling and quantifying model-form uncertainty; probabilistic, physics-based machine learning; mechanics-informed artificial neural networks for data-driven constitutive modeling; and efficient nonlinear projection-based model order reduction for time-critical applications such as design, active control, and digital twinning.