School of Engineering


Showing 41-50 of 73 Results

  • Alison Marsden

    Alison Marsden

    Associate Professor of Pediatrics (Cardiology) and of Bioengineering and, by courtesy, of Mechanical Engineering

    Current Research and Scholarly InterestsThe Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.

  • Lloyd B. Minor, MD

    Lloyd B. Minor, MD

    The Carl and Elizabeth Naumann Professorship for the Dean of the School of Medicine, Professor of Otolaryngology—Head & Neck Surgery and, by courtesy, of Neurobiology and Bioengineering

    BioLloyd B. Minor, MD, is a scientist, surgeon, and academic leader. He is the Carl and Elizabeth Naumann Dean of the Stanford University School of Medicine, a position he has held since December 2012.

    As dean, Dr. Minor plays an integral role in setting strategy for the clinical enterprise of Stanford Medicine, an academic medical center that includes the Stanford University School of Medicine, Stanford Health Care, and Stanford Children’s Health and Lucile Packard Children’s Hospital Stanford. He also oversees the quality of Stanford Medicine’s physician practices and growing clinical networks.

    With Dr. Minor’s leadership, Stanford Medicine has established a strategic vision to lead the biomedical revolution in Precision Health. The next generation of health care, Precision Health is focused on keeping people healthy and providing care that is tailored to individual variations. It’s predictive, proactive, preemptive, personalized, and patient-centered.

    An advocate for innovation, Dr. Minor has provided significant support for fundamental science and for clinical and translational research at Stanford. Through bold initiatives in medical education and increased support for PhD students, Dr. Minor is committed to inspiring and training future leaders.

    Among other accomplishments Dr. Minor has led the development and implementation of an innovative model for cancer research and patient care delivery at Stanford Medicine and has launched an initiative in biomedical data science to harness the power of big data and create a learning health care system. Committed to diversity, he has increased student financial aid and expanded faculty leadership opportunities.

    Before coming to Stanford, Dr. Minor was provost and senior vice president for academic affairs of The Johns Hopkins University. During his time as provost, Dr. Minor launched many university-wide initiatives such as the Gateway Sciences Initiative to support pedagogical innovation, and the Doctor of Philosophy Board to promote excellence in PhD education. He worked with others around the university and health system to coordinate the Individualized Health Initiative, which aimed to use genetic information to transform health care.

    Prior to his appointment as provost in 2009, Dr. Minor served as the Andelot Professor and director (chair) of the Department of Otolaryngology–Head and Neck Surgery in the Johns Hopkins University School of Medicine and otolaryngologist-in-chief of The Johns Hopkins Hospital. During his six-year tenure, he expanded annual research funding by more than half and increased clinical activity by more than 30 percent, while strengthening teaching efforts and student training.

    With more than 140 published articles and chapters, Dr. Minor is an expert in balance and inner ear disorders. Through neurophysiological investigations of eye movements and neuronal pathways, his work has identified adaptive mechanisms responsible for compensation to vestibular injury in a model system for studies of motor learning (the vestibulo-ocular reflex). The synergies between this basic research and clinical studies have led to improved methods for the diagnosis and treatment of balance disorders. In recognition of his work in refining a treatment for Ménière’s disease, Dr. Minor received the Prosper Ménière Society’s gold medal in 2010.

    In the medical community, Dr. Minor is perhaps best known for his discovery of superior canal dehiscence syndrome, a debilitating disorder characterized by sound- or pressure-induced dizziness. In 1998 Dr. Minor and colleagues published a description of the clinical manifestations of the syndrome and related its cause to an opening (dehiscence) in the bone covering the superior canal. He subsequently developed a surgical procedure that corrects the problem and alleviates symptoms.

    In 2012, Dr. Minor was elected to the National Academy of Medicine, formerly the Institute of Medicine.

  • Paul Nuyujukian

    Paul Nuyujukian

    Assistant Professor of Bioengineering and of Neurosurgery and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsOur group explores neuroengineering and its application to both basic and clinical neuroscience. Our goal is to develop brain-machine interfaces as a platform technology for a variety of brain-related medical conditions including stroke and epilepsy.

  • Kim Butts Pauly

    Kim Butts Pauly

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.

  • Mr Ryan K Pierce

    Mr Ryan K Pierce

    Lecturer

    BioRyan Pierce is a Lecturer in Bioengineering, and Co-Founder and CEO of Nine, a neonatal/maternal health technology company. He has served as VP of Design and Innovation at Ventus Medical, VP of Business Development at Loma Vista Medical, a healthcare investor at De Novo Ventures, and a product designer at Concentric Medical and The Foundry/Zephyr Medical. He is currently an Entrepreneur-in-Residence at Rock Health, a digital health seed fund. An inventor on over two dozen U.S. patents, he holds mechanical engineering degrees from MIT and Stanford, and an MBA from Harvard Business School.

  • Manu Prakash

    Manu Prakash

    Associate Professor of Bioengineering

    BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.

  • Stanley Qi

    Stanley Qi

    Assistant Professor of Bioengineering and of Chemical and Systems Biology

    BioDr. Lei Qi (Stanley) is Assistant Professor in the Department of Bioengineering (School of Engineering), Department of Chemical and Systems Biology (School of Medicine), and a core faculty member in Stanford ChEM-H Institute. He is one pioneer in the CRISPR technology development for genome engineering. He has developed the CRISPRi/a technologies for purposes beyond gene editing: gene regulation using CRISPR interference (CRISPRi, gene repression) and CRISPR activation (CRISPRa, gene activation), CRISPR dynamic imaging of chromatin in living cells, and CRISPRi/a high-throughput single or combinatorial genetic screens. He is also active in the field of Synthetic Biology and has developed synthetic noncoding RNAs for controlling transcription and translation. He obtained his Ph.D. in Bioengineering from the University of California Berkeley/UCSF in 2012. He joined UCSF as faculty fellow between 2012 to 2014, and joined the faculty at Stanford University since 2014. His lab currently is applying genetic engineering to rational cell design for understanding genomics and cell therapy.

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.