School of Humanities and Sciences
Showing 1-6 of 6 Results
-
Xiaoke Chen
Associate Professor of Biology
Current Research and Scholarly InterestsOur goal is to understand how brain circuits mediate motivated behaviors and how maladaptive changes in these circuits cause mood disorders. To achieve this goal, we focus on studying the neural circuits for pain and addiction, as both trigger highly motivated behaviors, whereas, transitioning from acute to chronic pain or from recreational to compulsive drug use involves maladaptive changes of the underlying neuronal circuitry.
-
Ching Chieh Chou
Basic Life Res Scientist
Current Research and Scholarly InterestsI am interested in the cellular strategies to regulate protein folding, transport and aggregation, and the pathogenic pathways leading to proteome remodeling in age-related neurodegenerative diseases. I use molecular imaging, cell reprogramming and multi-omics technologies to address these questions with importance to the aging and neuroscience field.
-
Jonas Cremer
Assistant Professor of Biology
Current Research and Scholarly InterestsWe are a highly interdisciplinary research team, joined in our desire to better understand microbial life. To elucidate how bacterial cells accumulate biomass and grow, we work with the model organism Escherichia coli. We further focus on gut bacteria and their interactions with the human host. Our approaches combine quantitative experimentation and mathematical modeling.
-
Larry Crowder
Edward Ricketts Provostial Professor, Professor of Oceans, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Biology
Current Research and Scholarly InterestsEcology, conservation, fisheries, protected species, ecosystem-based management
-
Martha S. Cyert
Dr. Nancy Chang Professor
Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.