School of Humanities and Sciences


Showing 101-110 of 120 Results

  • Charles Cox

    Charles Cox

    Lecturer

    BioDr. Charlie Cox’s primary interests lie in the field of chemical education, and in bringing cutting-edge science into the undergraduate classroom. He focuses on methods to promote active learning in organic and general chemistry, targeting improvements in problem solving, critical thinking and retention.

    Charlie was born in North Carolina. He took a strong interest in chemistry beginning in high school. As an undergraduate at North Carolina State U. (B.S. 2001) he explored research in biophysical chemistry, analyzing proteins with differential scanning calorimetry, and participated on a chemical education project focused on SCALE-Up curricula. His doctoral study at Clemson U. (Ph.D. 2006) required two projects—one chemistry-based and another education-oriented. He completed the first in a physical organic research group analyzing fullerenes and porphyrins. For the latter, he worked with Dr. Melanie Cooper, developing interventions in general and organic chemistry and evidence-models to support curricular reform. He also collaborated with Dr. Ron Stevens, applying IMMEX software for assessment of chemistry learning and problem solving (www.immex.com). Dr. Cox’s postdoctoral work in chemical education at the University of New Hampshire further motivated him to seek a career in teaching. He has taught general, inorganic, advanced organic, and analytical chemistry, as well as teaching methodology. He joined the Stanford Department of Chemistry in 2010, and is currently Lecturer of Chemistry and Coordinator for T.A. Teaching and Safety Training.

    Teaching and Research
    Dr. Cox teaches undergraduate organic, analytical and biochemistry. His research and course development emphasize techniques to promote active learning, including the use of flipped classrooms and case studies to improve learning and retention.

    Active Learning: Dr. Cox is actively designing and applying course frameworks that include a cyclic “group-individual-group” approach: In section, students work in groups to solve problems, and develop critical thinking by analyzing case-studies. This work is reinforced by an individual homework assignment, which is discussed in groups during the following lecture. Dr. Cox is implementing this approach in general, organic, and biochemistry courses to provide a learning structure in which students can actively work together yet still obtain individual attention.

    Flipped Classrooms: As part of active learning methods, Dr. Cox is developing best practices for implementing a flipped classroom paradigm in biochemistry. In this approach, lectures focus predominantly on group discussion with clicker questions designed to further facilitate understanding.
    Case Studies: Dr. Cox is developing case studies for general, organic, and bio-chemistry, as well as evidence-based methods to assess their effectiveness in promoting problem solving, critical thinking and long-term retention.

    Advising
    Dr. Cox serves as a pre-major advisor for freshman and sophomores, helping students with course selection, internship planning, and options for study abroad and research experience. He also serves as a chemistry major advisor and the chapter advisor for the social chemistry fraternity Alpha Chi Sigma.

    TA & Safety Training
    Dr. Cox coordinates teaching assistant and departmental safety training. This three-day event covers teaching practices, safety and university policies. In this role, Dr. Cox has developed hands-on safety training modules for graduate students and an online interactive safety training module for undergraduate students, which has disseminated at national meeting of the American Chemical Society.

    Leland Scholar Program
    Dr. Cox co-instructs the science portion in the Leland Scholars Programs for incoming freshmen with Dr. Jennifer Schwartz Poehlmann. The program provides a discussion of chemistry in the context of important considerations such as drug design, pollution and energy.

  • Rachel Crane

    Rachel Crane

    Ph.D. Student in Biology, admitted Autumn 2015

    BioRachel is interested in molluscan shell form. Animals’ shells defend them from a variety of environmental dangers and predatory attacks, including a multitude of low-magnitude, repeated stresses, which could cumulatively cause lethal fatigue damage. She studies how shell features—from composition and microstructure to overall morphology—contribute to fatigue resistance. By developing new mechanical techniques to test shell fatigue resistance, she hopes to answer questions about the evolution of shell shape and the ecological interactions between hard-shelled molluscs, their predators, and the environment.

    Rachel received her B.A. in Biology from Swarthmore College where she worked with Rachel Merz studying worm burrowing and distribution in the muddy intertidal zone. She then worked as the lab manager in Sheila Patek’s lab at Duke University examining the behavioral strategies that mantis shrimp use when hammering open hard-shelled prey