School of Humanities and Sciences


Showing 11-20 of 368 Results

  • Christopher O. Barnes

    Christopher O. Barnes

    Assistant Professor of Biology and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsResearch in our lab is aimed at defining the structural correlates of broad and potent antibody-mediated neutralization of viruses. We combine biophysical and structural methods (e.g., cryo-EM), protein engineering, and in vivo approaches to understand how enveloped viruses infect host cells and elicit antigen-specific immune responses. We are particularly interested in the co-evolution of HIV-1 and broadly-neutralizing IgG antibodies (bNAbs), which may hold the key to the development of an effective HIV-1 vaccine. In addition, we are investigating antibody responses to SARS-CoV-2 and related zoonotic coronaviruses (CoV), with the related goal of developing broadly-protective immunotherapies and vaccines against variants of concern and emerging CoV threats.

    HIV-1; SARS-CoV-2; coronaviruses; cryo-EM; crystallography; vaccines; directed evolution

  • Kathryn Barton

    Kathryn Barton

    Associate Professor, Biology
    Consulting Professor, Biology

    Current Research and Scholarly InterestsPlants make new leaves and stems from clusters of undifferentiated cells located at the tips of branches. These cell clusters are called apical meristems. We study transcription factors that control growth and development of apical meristems. Our studies include plants growing in environments rich in water and nutrients as well as in poor environments. The deeper knowledge of plant development gained from these studies will ultimately help increase food security in a changing environment.

  • Stacey Bent

    Stacey Bent

    Vice Provost, Graduate Education & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science and Engineering and, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Paul Bergeron

    Paul Bergeron

    Lecturer

    BioDr. Paul Bergeron is a lecturer in the physics department, focusing on teaching the 40 series and engaging in curriculum reform. His background is in dark matter phenomenology, working on supersymmetric extensions to the Standard Model, detection of dark matter at neutrino telescopes, and the programmatic tools used by the community to make predictions. While doing particle physics research, his time was split with teaching, first as an LA at UCSC during his undergrad and then during his PhD at the University of Utah as a TA, Head TA, adjunct lecturer at a community college, and instructor for a continuing education course in astronomy that he developed. His time at the University of Utah also included Physics Education Research (PER) into the efficacy of Content Rich group problems as part of a curriculum redesign effort in the department there. Following his PhD, he did a post doc with the interdisciplinary education research group 3 Dimensional Learning for Undergraduate Science at Michigan State University. While there, he worked with faculty in the STEM Teaching and Learning Fellowship as they worked to align their teaching with how scientists think and do science, while doing research into the corresponding gateway course transformation effort and into student engagement with the Scientific Practice of using and constructing (scientific) models. After his post doc, he worked for two years as a professor at Pasadena Community College teaching introductory physics and astronomy lectures and laboratories. Originally from San Jose, he is excited to finally be back in the Bay Area and to be a part of the Stanford community!

  • Dominique Bergmann

    Dominique Bergmann

    Shirley R. and Leonard W. Ely, Jr. Professor of the School of Humanities and Sciences

    Current Research and Scholarly InterestsWe use genetic, genomic and cell biological approaches to study cell fate acquisition, focusing on cases where cell fate is correlated with asymmetric cell division.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioCarolyn Bertozzi is the Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology at Stanford University, and an Investigator of the Howard Hughes Medical Institute. She completed her undergraduate degree in Chemistry from Harvard University in 1988 and her Ph.D. in Chemistry from UC Berkeley in 1993. After completing postdoctoral work at UCSF in the field of cellular immunology, she joined the UC Berkeley faculty in 1996. In June 2015, she joined the faculty at Stanford University and became the co-director and Institute Scholar at Sarafan ChEM-H.

    Prof. Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface glycosylation pertinent to disease states. Her lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Prof. Bertozzi has been recognized with many honors and awards for both her research and teaching accomplishments. She is an elected member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the German Academy of Sciences Leopoldina. Some awards of note include the Nobel Prize in Chemistry, Lemelson-MIT award for inventors, Whistler Award, Ernst Schering Prize, MacArthur Foundation Fellowship, the ACS Award in Pure Chemistry, Tetrahedron Young Investigator Award, and Irving Sigal Young Investigator Award of the Protein Society. Her efforts in undergraduate education have earned her the UC Berkeley Distinguished Teaching Award and the Donald Sterling Noyce Prize for Excellence in Undergraduate Teaching.