School of Medicine
Showing 1-2 of 2 Results
-
Kyle Gabriel Daniels
Assistant Professor of Genetics and, by courtesy, of Neurosurgery (Adult Neurosurgery)
BioKyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors.
Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions.
The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells. -
RonaldĀ W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.