School of Medicine
Showing 51-55 of 55 Results
-
Alexander Eckehart Urban
Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics
Current Research and Scholarly InterestsComplex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.
-
Anne Villeneuve
Berthold and Belle N. Guggenhime Professor and Professor of Developmental Biology and of Genetics
Current Research and Scholarly InterestsMechanisms underlying homologous chromosome pairing, DNA recombination and chromosome remodeling during meiosis, using the nematode Caenorhabditis elegans as an experimental system. High-resolution 3-D imaging of dynamic reorganization of chromosome architecture. Role of protease inhibitors in regulating sperm activation.
-
Douglas Vollrath
Professor of Genetics and, by courtesy, of Ophthalmology
On Partial Leave from 09/01/2025 To 02/28/2026Current Research and Scholarly InterestsThe Vollrath lab works to uncover molecular mechanisms relevant to the health and pathology of the outer retina. We study metabolic and other cellular interactions between the glial-like retinal pigment epithelium (RPE) and adjacent photoreceptors, with the goals of understanding the pathogenesis of photoreceptor degenerative diseases such as age-related macular degeneration and retinitis pigmentosa, and developing therapies.
-
Monte Winslow
Associate Professor of Genetics and of Pathology
Current Research and Scholarly InterestsOur laboratory uses genome-wide methods to uncover alterations that drive cancer progression and metastasis in genetically-engineered mouse models of human cancers. We combine cell-culture based mechanistic studies with our ability to alter pathways of interest during tumor progression in vivo to better understand each step of metastatic spread and to uncover the therapeutic vulnerabilities of advanced cancer cells.