School of Medicine


Showing 161-180 of 896 Results

  • Carol Conrad

    Carol Conrad

    Professor of Pediatrics (Pulmonary Medicine)
    On Leave from 08/01/2023 To 06/15/2024

    Current Research and Scholarly InterestsI am interested in studying the effects of inflammation in the lung, in particular, how N-acetylcysteine may affect and decrease that in CF patients. I am the PI of a multi-center study researching this question. Additionally, in a separate study involving children who have received lung transplants, I am a participating site in an NIH-sponsored observational and mechanistic multi-center study that will examine the role of viral infections in causing chronic graft rejection.

  • Christopher H. Contag

    Christopher H. Contag

    Professor of Pediatrics (Neonatology), Emeritus

    Current Research and Scholarly InterestsWe develop and use the tools of molecular imaging to understand oncogenesis, reveal patterns of cell migration in immunosurveillance, monitor gene expression, visualize stem cell biology, and assess the distribution of pathogens in living animal models of human biology and disease. Biology doesn't occur in "a vacuum" or on coated plates--it occurs in the living body and that's were we look for biological patterns and responses to insult.

  • John P. Cooke, MD, PhD

    John P. Cooke, MD, PhD

    Professor of Medicine (Cardiovascular Medicine), Emeritus

    Current Research and Scholarly InterestsOur translational research program in vascular regeneration is focused on generating and characterizing vascular cells from human induced pluripotential stem cells. We are also studying the therapeutic application of these cells in murine models of peripheral arterial disease. In these studies we leverage our longstanding interest in endothelial signaling, eg by nitric oxide synthase (NOS) as well as by nicotinic cholinergic receptors (nAChR).

  • Margaret Cooke, MD

    Margaret Cooke, MD

    Clinical Assistant Professor, Orthopaedic Surgery

    BioDr. Cooke is a clinical assistant professor in the Department of Orthopaedic Surgery at Stanford University School of Medicine. She has a strong clinical interest in hand, wrist, and elbow surgery for adult and pediatric patients. She is dual fellowship trained in Hand & Upper Extremity Surgery and Pediatric & Congenital Hand Surgery.

    As an orthopaedic surgeon, Dr. Cooke’s goal is to alleviate pain and improve hand, wrist, and elbow function so that her patients can return to the activities they enjoy. Her primary clinical interests are nerve compression (carpal tunnel), nerve injuries (traumatic/lacerations), joint instability/arthritis (degenerative conditions of the hand wrist and elbow), sports/athletic injuries, fracture care, and pediatric & congenital conditions of the hand and upper extremity.

    Dr. Cooke utilizes a multi-disciplinary approach in order to provide comprehensive care for each patient. She works closely with colleagues from oncology, radiology, physical therapy, and other specialties. Her team includes certified hand therapists, cast technicians, medical assistants, and patient care coordinators. Together, Dr. Cooke and her team are committed to providing the best possible care for patients.

    She invites patient referrals as early as possible when an upper extremity problem is suspected. She ensures a trusting relationship with referring physicians (whether primary care providers or specialists) by staying in communication so they understand and are comfortable with her recommendations.

    In addition to patient care, Dr. Cooke has enjoyed contributing to her field through research. Among Dr. Cooke’s clinical research interests is fracture healing, including gene expression following administration of medication to stimulate bone repair. She has authored articles on topics like infection prediction and pain management after surgical repair of fractures. Her work has appeared in the Journal of Orthopaedic Trauma, Journal of Orthopaedic Research, Osteoarthritis & Cartilage, Spine, and Transplantation. She also co-wrote the chapter “The History of Carpal Tunnel” for the textbook Carpal Tunnel Syndrome and Related Median Neuropathies.

    Dr. Cooke’s honors include a Howard Hughes Research Fellowship, an Outstanding Chief Resident Research Award, and recognition for authoring one of the top ten Foot & Ankle research papers at the 2016 American Academy of Orthopaedic Surgeons conference.

    In addition to her practice in the U.S., Dr. Cooke has traveled abroad as a physician volunteer to provide surgical services in underserved areas where there is no access to hand surgery specialists. In partnership with the surgeon-founded nonprofit organization Touching Hands, she has performed hand surgeries on adult and pediatric patients in Honduras. Dr. Cooke also has traveled with Shriners Hospital to treat children in Davao, Philippines.

  • David N. Cornfield

    David N. Cornfield

    Anne T. and Robert M. Bass Professor of Pediatric Pulmonary Medicine

    Current Research and Scholarly InterestsOver the past 20 years, the Cornfield Laboratory has focused upon basic, translational and clinical research, with a primary focus on lung biology. As an active clinician-scientist, delivering care to acutely and chronically ill infants and children, our lab focuses on significant clinical challenges and tried to use science to craft novel solutions to difficult clinical problems.

  • Victoria Cosgrove

    Victoria Cosgrove

    Assistant Professor of Psychiatry and Behavioral Sciences (Child and Adolescent Psychiatry and Child Development)

    Current Research and Scholarly InterestsDr. Cosgrove studies putative roles for life and family stress as well as inflammatory and neurotrophic pathways in the etiology and development of mood disorders across the life span.

  • Helio Costa

    Helio Costa

    Adjunct Clinical Assistant Professor, Pathology

    BioHelio Costa, PhD, is a medical geneticist with expertise in oncology, medical genetics and genomics, computational biology, data science, software engineering, and product development. He is passionate about leveraging his interdisciplinary skillset to build and develop commercial-grade cancer diagnostic products and medical software that aid in patient care and clinical decision support. Currently he is Medical Director of Oncology at Natera, and an Adjunct Clinical Assistant Professor in the Department of Pathology at Stanford Medical School.

    Dr. Costa's research focuses on developing and implementing new medical diagnostic genetic tests and software for use in patient care. His research group developed DNA and RNA cancer diagnostic tests currently in use at Stanford Health Care as well as developing clinical algorithms using large-scale clinical laboratory datasets and patient electronic medical records to predict patient outcomes and aid in therapeutic clinical decision support. Additionally, Dr. Costa served as a co-Investigator in the NIH Clinical Genome Resource (ClinGen) Consortium, and led the engineering and product management teams developing FDA-recognized medical software applications used by healthcare providers, researchers, and biotechnology companies to define the clinical relevance of genes and pathogenicity of mutations identified in patients.

    Dr. Costa is the founding director of the Stanford Clinical Data Science Fellowship where post-doctoral fellows engage in interdisciplinary clinical research and embed in health care workflows learning, building and deploying real-world health data solutions in the Stanford Health Care system. He is currently an Attending Medical Geneticist for the Molecular Genetic Pathology Laboratory at Stanford Health Care where he previously served as an Assistant Lab Director.

    Dr. Costa received his BS in Genetics from University of California at Davis, his PhD in Genetics from Stanford University School of Medicine, and his ABMGG Clinical Molecular Genetics and Genomics fellowship training from Stanford University School of Medicine.

  • Tina Cowan

    Tina Cowan

    Professor of Pathology (Clinical) and, by courtesy, of Pediatrics (Genetics)

    Current Research and Scholarly Interestsscreening and diagnosis of patients with inborn errors of metabolism, including newborn screening, development of new testing methods and genotype/phenotype correlations.

  • Kenneth L. Cox

    Kenneth L. Cox

    Professor of Pediatrics (Gastroenterology) at the Lucile Salter Packard Children's Hospital, Emeritus

    Current Research and Scholarly InterestsGastroenterology, biliary motility, hormonal regulation, embryology, gastrointestinal tract, clinical management of pediatric liver transplant recipients.

  • Alia Crum

    Alia Crum

    Associate Professor of Psychology and, by courtesy, of Medicine (Primary Care & Population Health)

    Current Research and Scholarly InterestsOur lab focuses on how subjective mindsets (e.g., thoughts, beliefs and expectations) can alter objective reality through behavioral, psychological, and physiological mechanisms. We are interested in understanding how mindsets affect important outcomes both within and beyond the realm of medicine, in the domains such as exercise, diet and stress. https://mbl.stanford.edu/

  • Agnieszka Czechowicz, MD, PhD

    Agnieszka Czechowicz, MD, PhD

    Assistant Professor of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Czechowicz’s research is aimed at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. This work can be applied across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome-augmentation and cancer.

  • Gary Dahl

    Gary Dahl

    Professor of Pediatrics (Hematology/Oncology), Emeritus

    Current Research and Scholarly InterestsHematology/Oncology, Phase I drug studies for childhood cancer, overcoming multidrug resistance in leukemia and solid tumors, biology and treatment of acute nonlymphocytic leukemia, early detection of central nervous system leukemia by measuring growth, factor binding proteins.

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Heike Daldrup-Link

    Heike Daldrup-Link

    Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)

    Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.

  • Mihaela Damian MD

    Mihaela Damian MD

    Clinical Associate Professor, Pediatrics - Critical Care

    Current Research and Scholarly InterestsClinical Pharmacology
    Sedation
    Solid Organ Transplantation