School of Medicine
Showing 1-10 of 39 Results
-
Christopher Beaulieu M.D., Ph.D.
Professor of Radiology (Musculoskeletal Imaging)
Current Research and Scholarly InterestsInformatics and image processing techniques that provide infrastructure for diagnosis in musculoskeletal imaging. Decision support for improving accuracy of bone tumor diagnosis. Improved methods for MRI in the musculoskeletal system.
-
Hans-Christoph Becker, MD, FSABI, FSCCT
Clinical Professor, Radiology
Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.
-
Corinne Beinat
Assistant Professor of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsThe focus of my research is to develop novel imaging and treatment strategies to detect and better manage cancer. This approach relies first on the identification and validation of molecular targets and biomarkers that are linked with underlying the underlying biology driving the initiation and progression of cancers. We then develop novel small molecule based radiotracers to monitor fundamental molecular and cellular processes occurring in living subjects using positron emission tomography (PET) with the goal of improving cancer diagnosis and management. We additionally develop novel peptide based theragnostic agents for stratification of patients with high receptor expression, treatment with targeted radionuclide therapy, and subsequent monitoring of treatment response. Our overall goal is to develop multiple clinically translatable strategies to improve cancer diagnosis, management, and outcomes.
-
Francis Blankenberg
Associate Professor of Radiology (Pediatric Radiology) and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsStudies on apoptotic cell death in vivo using the H MRS phenomenon.
-
Jeremy Dahl
Associate Professor of Radiology (Pediatric Radiology)
On Partial Leave from 07/01/2024 To 06/30/2025Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.
-
Hongjie Dai
The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus
BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.
Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.
The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.
Nanomaterials
The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.
Nanoscale Physics and Electronics
High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.
Nanomedicine and NIR-II Imaging
Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.
Electrocatalysis and Batteries
The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science. -
Heike Daldrup-Link
Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.
-
Bruce Daniel
Professor of Radiology (Body Imaging) and, by courtesy, of Bioengineering
Current Research and Scholarly Interests1. MRI of Breast Cancer, particularly new techniques. Currently being explored are techniques including ultra high spatial resolution MRI and contrast-agent-free detection of breast tumors.
2. MRI-guided interventions, especially MRI-compatible remote manipulation and haptics
3. Medical Mixed Reality. Currently being explored are methods of fusing patients and their images to potentially improve breast conserving surgery, and other conditions. -
Adam de la Zerda
Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo
-
Utkan Demirci
Professor of Radiology (Diagnostic Sciences Laboratory) and, by courtesy, of Electrical Engineering
On Partial Leave from 02/26/2024 To 02/25/2025BioDr. Utkan Demirci, UofM’99, Stanford’01’05’05, is a Professor of Radiology (with tenure) and of Electrical Engineering (by courtesy) at the Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, where he leads a productive researcher group. Utkan is a tenured professor at Stanford University School of Medicine. Prior to joining Stanford in 2014, he held the position of Associate Professor at the Brigham and Women’s Hospital-Harvard Medical School and also served at the Harvard-MIT Health Sciences and Technology division. Over the past decade, his research group has focused on the early detection of cancer and has made significant contributions to the development of microfluidic platforms for sorting rare cells and exosomes and point-of-care bio-sensing technologies.
Dr. Demirci leads a productive and impactful research group focused on addressing problems from the clinic with innovations including cell sorter for IVF, optical technologies for detecting viruses, portable point of care technologies for diagnostics in global health, smart robots in vivo, extracellular vesicle based early detection approaches for cancer. He is an elected fellow of the American Institute of Medical and Biological Engineering and The Academy for Radiology & Biomedical Imaging Research Distinguished Investigator.
He has published over 250 peer-reviewed articles, 300 abstracts and proceedings, 24 book chapters and editorials, and 7 edited books. He also serves on the editorial board of various journals. He holds 15 patents (11 of which are translated into broadly used biomedical products) and has co-founded multiple successful companies. Dr. Demirci's pioneering work in microfluidics and cell sorting has resulted in CE certified and FDA approved devices used in over 500,000 clinical cases serving patients globally.