School of Medicine


Showing 1-10 of 15 Results

  • Vasiliki (Vicky) Bikia

    Vasiliki (Vicky) Bikia

    Postdoctoral Scholar, Biomedical Informatics

    BioDr. Vasiliki Bikia is a Fellow at the Institute for Human-Centered Artificial Intelligence and Postdoctoral Scholar at Stanford University, working with Prof. Roxana Daneshjou. She received her Advanced Diploma degree in Electrical and Computer Engineering from the Aristotle University of Thessaloniki (AUTH), Greece, in 2017, and her Ph.D. degree in Biomedical Engineering from the Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland, in 2021. Her Ph.D. research addressed the clinical need for providing non-invasive tools for cardiovascular monitoring leveraging machine learning and physics-based numerical modeling. In particular, she developed and tested novel healthcare algorithms for major biomarkers including central blood pressure, stroke volume, left ventricular elastance and arterial stiffness.

    Her current work focuses on developing large multimodal models to enhance biomarker identification and predict patient outcomes. She leverages representation learning for both textual and visual medical data, creating models that are applied to downstream tasks, yielding more nuanced and precise clinical predictions. At Stanford, she has also contributed to the Stanford Spezi framework, designing and prototyping the Spezi Data Pipeline tool for enhanced digital health data accessibility and analysis workflows.

    Her research interests include health algorithms, clinical and digital biomarkers, machine learning, non-invasive monitoring, and the application of large language models for personalized healthcare, predictive analytics, and enhancing patient-clinician interactions.

  • Hejie Cui

    Hejie Cui

    Postdoctoral Scholar, Biomedical Informatics

    BioDr. Hejie Cui is a postdoctoral researcher at the Stanford Center for Biomedical Informatics Research at Stanford University. Her research focuses on the intersection of machine learning, data mining, and biomedical informatics. At Stanford, Dr. Cui works on large language model (LLM) evaluation and post-training for healthcare. Dr. Cui has authored and co-authored several publications in top computer science and interdisciplinary venues, including NeurIPS, KDD, AAAI, CIKM, TMI, and MICCAI. Her work contributes to advancing the application of artificial intelligence in healthcare and improving the understanding of complex biomedical data. Dr. Cui was selected as a Rising Star in EECS in 2023. She has also received numerous awards, including the Fellowship of 2021 CRA-WP Grad Cohort for Women, Student Travel Grant Award for MICCAI'22, NSF Travel Grant for CIKM'22, and NeurIPS AI4Science Travel Award for NeurIPS'22. Dr. Cui holds a Ph.D. in Computer Science from Emory University (2024) and a B.Eng. in Computer Science and Engineering from Tongji University (2019). During her graduate studies, she gained industry experience through internships at Microsoft Research and Amazon Science.

  • François Grolleau

    François Grolleau

    Postdoctoral Scholar, Biomedical Informatics

    BioFrançois Grolleau MD, MPH, PhD is a Postdoctoral Scholar at the Stanford Center for Biomedical Informatics Research. His research work centers on developing and evaluating computational systems that use retrieval-augmented language models and other advanced methods from statistics and machine learning to assist medical decision-making.

    François is a certified Anesthesiologist and Critical Care Medicine specialist from France. He holds an MPH degree and a PhD in Biostatistics from Paris Cité University. In 2016/2017, he worked as a research fellow in the Department of Health Research Methods, Evidence, and Impact at McMaster University, Canada (Profs Yannick Le Manach and Gordon Guyatt). During his doctorate with Prof. Raphaël Porcher, he utilized causal inference, personalized medicine methods, and statistical reinforcement learning for medical applications in the ICU.

  • Zepeng Huo

    Zepeng Huo

    Postdoctoral Scholar, Biomedical Informatics

    BioConducting research on Foundation Models for medicine

  • Tushar Mungle

    Tushar Mungle

    Postdoctoral Scholar, Biomedical Informatics

    Current Research and Scholarly InterestsUse electronic health records (EHRs) to identify and classify common ocular diseases such as glaucoma, diabetic retinopathy, and macular degeneration. We aim to develop an approach to accurately identify these conditions using EHRs. This will be followed by cluster analysis to identify novel subtypes of these conditions that have not been recognized before. Finally, we will develop an approach to extract outcome data from EHRs for patients with these conditions in the primary care setting.

  • Fateme Nateghi Haredasht

    Fateme Nateghi Haredasht

    Postdoctoral Scholar, Biomedical Informatics

    BioAs a postdoctoral scholar at the Stanford Center for Biomedical Informatics Research, I find myself at the exciting intersection of machine learning and healthcare. My journey began with a PhD in Biomedical Sciences from KU Leuven in Belgium, where I delved into the complexities of machine learning algorithms and their transformative potential in healthcare settings. My research, particularly focused on adapting these algorithms for time-to-event data (a method used for predicting specific events in a patient’s future), has not only been a challenging endeavor but also a deeply fulfilling one.

    Now at Stanford, my role involves not just advancing machine learning integration in healthcare, but also collaborating with a diverse team of experts. Together, we're striving to unravel complex healthcare challenges and improve patient outcomes.

  • Madelena Ng

    Madelena Ng

    Postdoctoral Scholar, Biomedical Informatics

    BioDr. Ng is a postdoctoral fellow at the Stanford Center for Biomedical Informatics Research, mentored by Dr. Tina Hernandez Boussard. Her research aims to illuminate the evolving ethical and practical challenges with emerging technologies used for health purposes. Prior to joining Stanford, Dr. Ng facilitated mobile- and internet-based health research initiatives with the Health eHeart Study and the Eureka Digital Research Platform and developed research study prototypes that used blockchain technology for health data exchange. Her current work focuses on discerning key challenges that exist at each stage of the AI life cycle and generating informed guidance to drive the responsible and equitable use of AI for patient care.