School of Medicine


Showing 1-3 of 3 Results

  • Giacomo Annio

    Giacomo Annio

    Affiliate, Rad/Pediatric Radiology
    Visiting Postdoctoral Scholar, Rad/Pediatric Radiology

    BioI am a physicist by training (MSc) with a strong focus on Applied Biomechanics. I earned a Master of Research in Medical Imaging and obtained an EPSRC fellowship to carry out my PhD in University College London, collaborating actively with the Great Ormond Street Hospital for Children. My scientific career has granted me a diverse background embedding imaging and diagnostic methodologies at microscopical level (nanotechnology) and at macroscopic level (using MRI).

    I developed a highly international character, having studied and worked in 5 countries (Italy, France, United Kingdom, Norway and United States), participating in research funded by international grants and collaborate with numerous institution across the world.

    I recently received a Horizon Marie Curie Global Fellowship from the European Commission which is funding the project GLIOBID: Guiding glioblastoma treatments by decrypting tumour biomechanics via Magnetic Resonance Elastography (more details here https://cordis.europa.eu/project/id/101068340).
    This project will be carried out at Stanford under the supervision of Prof. Heike Daldrup-Link and combined synergistically with Theragnostic cutting-edge technologies.

  • Robin Augustine

    Robin Augustine

    Basic Life Research Scientist, Rad/Pediatric Radiology

    Current Role at StanfordDr. Robin Augustine's current research interests center on three captivating areas: graphene-based bioscaffolds, islet transplantation, and synchronized cellular response. In the realm of graphene-based bioscaffolds, Dr. Augustine actively explores graphene's potential as a biomaterial for tissue engineering. With its unique properties, graphene offers exceptional opportunities for developing innovative bioscaffolds. Dr. Augustine aims to design and engineer graphene-based materials that can provide structural support, promote cellular adhesion and growth, and enhance tissue regeneration. Leveraging the exceptional properties of graphene, such as its mechanical strength, electrical conductivity, and biocompatibility, Dr. Augustine's goal is to contribute to the development of advanced bioscaffolds for various applications in regenerative medicine. Another area of Dr. Augustine's research focuses on islet transplantation, particularly in treating diabetes. Islet transplantation holds promise as a potential cure for type 1 diabetes, involving the transfer of insulin-producing islet cells into the recipient's pancreas. Dr. Augustine investigates strategies to optimize islet transplantation techniques, improve the long-term viability of transplanted islets, and enhance their functionality. The ultimate objective is to contribute to the development of more effective and sustainable approaches for islet transplantation, with the aim of improving the quality of life for individuals living with diabetes. Dr. Augustine also explores the field of synchronized cellular response, recognizing its crucial role in tissue development, regeneration, and repair. The focus is on understanding and manipulating synchronized cellular response in complex tissue systems. By studying the intricate signaling pathways and cellular interactions, Dr. Augustine aims to identify key factors and mechanisms that regulate coordinated cellular behavior. This knowledge can inform the development of strategies to enhance tissue regeneration and repair processes, potentially leading to improved outcomes in various biomedical applications. Through research in graphene-based bioscaffolds, islet transplantation, and synchronized cellular response, Dr. Augustine strives to contribute to the advancement of tissue engineering, regenerative medicine, and the development of innovative therapies for complex medical challenges.