School of Medicine
Showing 21-40 of 69 Results
-
Iram Ahmad, MD, MME
Assistant Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics
BioDr. Iram Ahmad received her MD from the University of Michigan Medical School. She then completed Otolaryngology residency program at the University of Iowa. At Iowa, she was an NIH- sponsored T32 research resident in the Department of Otolaryngology. During her residency training she also gained expertise in education and graduated with a Master in Medical Education from the University of Iowa Carver College of Medicine. After residency, Dr. Ahmad continued at Iowa for her fellowship in Pediatric Otolaryngology.
Dr. Ahmad is an Assistant Professor of Otolaryngology- Head and Neck Surgery in the Pediatric Division. Her clinical expertise is in Pediatric Otology and hearing loss. She is focused on children with hearing loss, cochlear implantation, cholesteatoma, and general pediatric Otolaryngology. Her research interests are in children with congenital hearing loss and microstructure changes of the brain. -
Steven R. Alexander, MD
Professor of Pediatrics (Nephrology), Emeritus
Current Research and Scholarly InterestsDialysis, kidney transplantation, continuous renal replacement therapy in pediatric patients; chronic kidney disease in pediatric patients.
-
Leina Alrabadi
Clinical Associate Professor, Pediatrics - Gastroenterology
BioI enjoy working with a multidisciplinary team to care for patients who have complex medical needs with the aim of giving children a better future. As a clinical researcher, my main focus is on finding improved therapies for autoimmune and cholestatic liver diseases, since an ideal therapy currently does not exist.
-
Cristina Maria Alvira
Associate Professor of Pediatrics (Critical Care)
Current Research and Scholarly InterestsThe overall objective of the Alvira Laboratory is to elucidate the mechanisms that promote postnatal lung development and repair, by focusing on three main scientific goals: (i) identification of the signaling pathways that direct the transition between the saccular and alveolar stages of lung development; (ii) exploration of the interplay between postnatal vascular and alveolar development; and (iii) determination of developmentally regulated pathways that mediate lung repair after injury.
-
Michelle Ameri, BA, RVT
Adm Svcs Admstr 2, Pediatrics - Cardiology
Current Role at StanfordBASE Operations Manager
-
Manuel R. Amieva
Professor of Pediatrics (Infectious Diseases) and of Microbiology and Immunology
Current Research and Scholarly InterestsMy laboratory studies how bacteria colonize our bodies for long periods of time, and how interactions between bacteria and the epithelial surfaces of the gastrointestinal tract and skin may lead to disease. Epithelial surfaces are the first barrier against infection, but they also where our bodies meet and co-evolve with the microbial world.. Several of our studies have focused on the epithelial junctions as a target for bacterial pathogens. The host epithelium uses its epithelial junctions to form a tight but dynamic barrier with an external surface that is inhospitable to microbial attachment, secretes anti-microbial compounds, and has a rapid rate of self-renewal. The balance in the microbe-epithelial relationship results in silent commensalism or symbiosis; an imbalance results in diseases ranging from acute bacterial invasive disease to chronic ulcers or carcinoma.
Our laboratory has developed novel microscopy applications such as quantitative 3D confocal microscopy, electron microscopy, time-lapse imaging, microinjection and micromanipulation to visualize the interaction of pathogens with epithelial cells in culture and in animal and human tissues. Many of out studies focus on the gastric pathogen Helicobacter pylori, but we have also expanded our investigations to include the intestinal pathogens Listeria monocytogenes and Salmonella enterica, and the skin pathogen and colonizer Staphylococcus aureus. I believe that elucidating how microbes communicate with and alter our epithelial cells at a molecular level will be important for finding novel therapeutic targets to control mucosal colonization and prevent invasive disease.
Using this perspective, we have uncovered several novel concepts of how bacteria colonize and breach our epithelial surfaces. For example, we discovered that Helicobacter pylori target the intercellular junctions, and in particular that the virulence factor CagA affects junction assembly and cell polarity. This confers H. pylori the ability to extract nutrients and grow directly on the epithelial surface. We also found that these properties of CagA have consequences for cellular transformation of the epithelium. For instance, we showed that H. pylori affect the activity and state of epithelial stem cells in the stomach by colonizing the epithelial surface deep in the gastric glands. This gland-associated population is essential for pathological inflammation and hyperplasia in animal models, and confers significant colonization advantages to the bacteria. Our Listeria research uncovered a new mechanism and site where bacteria can breach the gastrointestinal epithelial barrier to invade. We found that Listeria find their receptor for invasion at sites of epithelial senescence, where the epithelial junctions undergo dynamic turnover. To study Salmonella and H. pylori we have developed a human organoid model to study their interactions with human gut epithelium in vitro. To study Staphylococcus aureus pathogenesis, we have developed methods to visualize infection at the scale of a single bacterial microcolony using an organoid culture system of human keratinocytes and fibroblasts that grow into a 3D skin-equivalent. We recently identified several proteins at the eptithelial junctions as host factors involved in the pathogenesis of one of Staphylococcus aureus major toxins.