School of Medicine


Showing 1-10 of 17 Results

  • Patrick Barnes

    Patrick Barnes

    Professor of Radiology (Pediatric Radiology) at the Stanford University Medical Center, Emeritus

    Current Research and Scholarly InterestsAdvanced imaging, including magnetic resonance imaging, of injury to the developing central nervous system; including fetal, neonatal, infant and young child; and, including nonaccidental injury (e.g. child abuse).

    See Biosketch for details.

  • Richard Barth

    Richard Barth

    Professor of Radiology (Pediatric Radiology) and, by courtesy, of Obstetrics and Gynecology (Maternal Fetal Medicine)
    On Partial Leave from 03/01/2024 To 07/31/2024

    Current Research and Scholarly InterestsMagnetic Resonance Imaging and Sonographic diagnosis of fetal anomalies.
    Focus interest in the diagnosis and conservative (non-surgical and minimal radiation) management of congenital broncho pulmonary malformations.
    Imaging of appendicitis in children.
    Sonography of the pediatric testis.

  • Christopher Beaulieu M.D., Ph.D.

    Christopher Beaulieu M.D., Ph.D.

    Professor of Radiology (Musculoskeletal Imaging) and, by courtesy, of Orthopaedic Surgery

    Current Research and Scholarly InterestsInformatics and image processing techniques that provide infrastructure for diagnosis in musculoskeletal imaging. Decision support for improving accuracy of bone tumor diagnosis. Improved methods for MRI in the musculoskeletal system.

  • Hans-Christoph Becker, MD, FSABI, FSCCT

    Hans-Christoph Becker, MD, FSABI, FSCCT

    Clinical Professor, Radiology

    Current Research and Scholarly InterestsMyocardial bridges (MB) with associated upfront atherosclerotic lesions are common findings on coronary computed tomography angiography (CTA). Abnormal septal wall motion in exercise echocardiography (EE) may to be associated with MB. Intravascular ultrasound (IVUS) is considered the gold standard for the detection of MB. We investigate whether CTA is comparable to IVUS for the assessment of MB and upstream plaques in symptomatic patients with suspicion for MB raised by EE.

  • Corinne Beinat

    Corinne Beinat

    Assistant Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsThe focus of my research is to develop novel imaging and treatment strategies to detect and better manage cancer. This approach relies first on the identification and validation of molecular targets and biomarkers that are linked with underlying the underlying biology driving the initiation and progression of cancers. We then develop novel small molecule based radiotracers to monitor fundamental molecular and cellular processes occurring in living subjects using positron emission tomography (PET) with the goal of improving cancer diagnosis and management. We additionally develop novel peptide based theragnostic agents for stratification of patients with high receptor expression, treatment with targeted radionuclide therapy, and subsequent monitoring of treatment response. Our overall goal is to develop multiple clinically translatable strategies to improve cancer diagnosis, management, and outcomes.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). She is now the Baker Family Director of Stanford ChEM-H.

    Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, the ACS Award in Pure Chemistry, and the Chemistry of the Future Solvay Prize, among others.

    The Bertozzi Group develops chemical tools to study the glycobiology underlying diseases such as cancer, inflammation, tuberculosis and most recently COVID-19. She is the inventor of "bioorthogonal chemistry", a class of chemical reactions compatible with living systems that enable molecular imaging and drug targeting. Her group also developed new therapeutic modalities for targeted degradation of extracellular biomolecules, such as antibody-enzyme conjugates and Lysosome Targeting Chimeras (LYTACs). As well, her group studies NGly1 deficiency, a rare genetic disease characterized by loss of the human N-glycanase.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi cofounded Redwood Bioscience, Enable Biosciences, Palleon Pharmaceuticals, InterVenn Bio, OliLux Bio, Grace Science LLC and Lycia Therapeutics. She is also a member of the Board of Directors of Lilly.

  • Sandip Biswal, MD

    Sandip Biswal, MD

    Adjunct Clinical Professor, Radiology

    Current Research and Scholarly InterestsThe management of individuals suffering from chronic pain is unfortunately limited by poor diagnostic tests and therapies. Our research group is interested in 'imaging pain' by using novel imaging techniques to study peripheral nociception and inflammation with the goal of accurately identifying the location of pain generators. We are developing new approaches with positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET/MRI) and are currently in clinical trials.