School of Medicine
Showing 11-20 of 25 Results
-
Michael Fischbach
Liu (Liao) Family Professor
Current Research and Scholarly InterestsThe microbiome carries out extraordinary feats of biology: it produces hundreds of molecules, many of which impact host physiology; modulates immune function potently and specifically; self-organizes biogeographically; and exhibits profound stability in the face of perturbations. Our lab studies the mechanisms of microbiome-host interactions. Our approach is based on two technologies we recently developed: a complex (119-member) defined gut community that serves as an analytically manageable but biologically relevant system for experimentation, and new genetic systems for common species from the microbiome. Using these systems, we investigate mechanisms at the community level and the strain level.
1) Community-level mechanisms. A typical gut microbiome consists of 200-250 bacterial species that span >6 orders of magnitude in relative abundance. As a system, these bacteria carry out extraordinary feats of metabolite consumption and production, elicit a variety of specific immune cell populations, self-organize geographically and metabolically, and exhibit profound resilience against a wide range of perturbations. Yet remarkably little is known about how the community functions as a system. We are exploring this by asking two broad questions: How do groups of organisms work together to influence immune function? What are the mechanisms that govern metabolism and ecology at the 100+ strain scale? Our goal is to learn rules that will enable us to design communities that solve specific therapeutic problems.
2) Strain-level mechanisms. Even though gut and skin colonists live in communities, individual strains can have an extraordinary impact on host biology. We focus on two broad (and partially overlapping) categories:
Immune modulation: Can we redirect colonist-specific T cells against an antigen of interest by expressing it on the surface of a bacterium? How do skin colonists induce high levels of Staphylococcus-specific antibodies in mice and humans?
Abundant microbiome-derived molecules: By constructing single-strain/single-gene knockouts in a complex defined community, we will ask: What are the effects of bacterially produced molecules on host metabolism and immunology? Can the molecular output of low-abundance organisms impact host physiology?
3) Cell and gene therapy. We have begun two new efforts in mammalian cell and gene therapies. First, we are developing methods that enable cell-type specific delivery of genome editing payloads in vivo. We are especially interested in delivery vehicles that are customizable and easy to manufacture. Second, we have begun a comprehensive genome mining effort with an emphasis on understudied or entirely novel enzyme systems with utility in mammalian genome editing. -
Paul Graham Fisher, MD
Beirne Family Professor of Pediatric Neuro-Oncology, Professor of Pediatrics and, by courtesy, of Neurosurgery and of Epidemiology and Population Health
On Partial Leave from 07/15/2024 To 07/13/2025Current Research and Scholarly InterestsClinical neuro-oncology: My research explores the epidemiology, natural history, and disease patterns of brain tumors and other cancers in childhood, as well as prospective clinical trials for treating these neoplasms. Research interests also include neurologic effects of cancer and its therapies.
-
Philip Andrew Fisher
Diana Chen Professor of Early Childhood Learning and Professor, by courtesy, of Pediatrics
BioDr. Philip Fisher is the Diana Chen Professor of Early Childhood Learning in the Graduate School of Education at Stanford. His research, which has been continuously funded by the National Institutes of Health since 1999, focuses on developing and evaluating scalable early childhood interventions in communities, and on translating scientific knowledge regarding healthy development under conditions of adversity for use in social policy and programs. He is particularly interested in the effects of early stressful experiences on children's neurobiological and psychological development, and in prevention and treatment programs for improving children's functioning in areas such as relationships with caregivers and peers, social-emotional development, and academic achievement. He is currently the lead investigator in the ongoing RAPID-EC project, a national survey on the well-being of households with young children during the COVID-19 pandemic. Dr. Fisher is also interested in the brain's plasticity in the context of therapeutic interventions. He is the developer of a number of widely implemented evidence-based interventions for supporting healthy child development in the context of social and economic adversity, including Treatment Foster Care Oregon for Preschoolers (TFCO-P), Kids in Transition to School (KITS), and Filming Interactions to Nurture Development (FIND). He has published over 200 scientific papers in peer reviewed journals. He is the recipient of the 2012 Society for Prevention Research Translational Science Award, and a 2019 Fellow of the American Psychological Society.
-
Barry Fleisher
Associate Professor of Pediatrics at the Lucile Salter Packard Children's Hospital, Emeritus
Current Research and Scholarly InterestsNeonatology, neurobehavioral development, outcomes in premature infants.
-
Eric Foote
Clinical Assistant Professor, Pediatrics - Neonatal and Developmental Medicine
BioEric Foote is a pediatric hospitalist with experience conducting clinical and public health research around the world. His research focuses on identifying and intervening on health disparities in low income countries and in low resource settings. Currently, he is developing and evaluating a community health worker-led household phototherapy intervention to extend access to neonatal jaundice care for newborns in rural Bangladesh. He is also working to improve SARS-CoV-2 testing and genomic surveillance across California and worldwide.
-
James Ford
Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNAdamage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.