School of Medicine


Showing 1-8 of 8 Results

  • Taia T. Wang, MD, PhD, MSCI

    Taia T. Wang, MD, PhD, MSCI

    Assistant Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsLaboratory of Mechanisms in Human Immunity and Disease Pathogenesis

    Studies in our lab are aimed at defining mechanisms in human immunity and disease. We are particularly interested the hypothesis that diversity in antibody-based signaling that arises from diversity in IgG antibodies and their receptors, is a central driver of heterogeneity in human immune functioning and susceptibility to infectious diseases. We are studying how the Fc domain repertoire of an individual impacts the quality of effector cell responses that can be recruited during immune activation and how selectivity of effector responses contributes to immunity and disease.

    SARS-CoV-2, dengue viruses, influenza viruses, disease pathogenesis, influenza vaccines

    Current clinical studies:
    Recruiting:

    An Open Label Study of IgG Fc Glycan Composition in Human Immunity
    Principal Investigator: Taia T. Wang, MD, PhD
    ClinicalTrials.gov Identifier:
    NCT01967238

  • Hannah Constance Wastyk

    Hannah Constance Wastyk

    Temp - Non-Exempt, Microbiology and Immunology

    BioI am a PhD student in the Bioengineering Department working under Dr. Justin Sonnenburg. I am currently studying the microbiome and how it relates to the immune system in human studies through machine learning and statistical methods. I am also committed to creating opportunities and providing mentorship to students of diverse backgrounds.

  • Chien-Ting Wu

    Chien-Ting Wu

    Postdoctoral Research Fellow, Microbiology and Immunology

    BioI started conducting research as a second-year student in college. I entered a biochemical lab to perform research and had my own project. My topic was Alzheimer's disease, and I focused on the relationship between aggregated amyloid-beta and reactive oxygen species levels in cells. I am very grateful for this particular research experience because it allowed me to realize that I am particularly interested in studying disease-associated proteins on a molecular level. Thus, these early research experiences have been invaluable in shaping my scientific interests and personality.

    I decided to pursue my graduate training straight out of college by obtaining my master’s degree. I then decided to join the Chen, I-T. Lab for my graduate research training, where I discovered that a novel recombinant protein, LZ8 cloned from Ganoderma, can inhibit the duplication of cancer cells in vitro and decrease the growth rate of tumors in vivo through regulating the p53/MDM2/mTOR signaling pathway. My findings were published in the journal Carcinogenesis. This was my first first-author paper. During this time, I learned how to become an independent scientist.

    After my master’s degree, I spent three years completing my military service as a research assistant in Academia Sinica. I worked under the supervision of Prof. Tang Tang. My research focused on the molecular mechanism of centriole duplication. In my research, I found that CEP120, a ciliopathy protein, is required to promote centriole elongation. Overexpression of CEP120 can induce overly long centrioles. This work was published in the Journal of Cell Biology. This was my second first-author paper. Because of these valuable lab experiences, I began to be fascinated by the centriole and cilium field.

    Afterwards, to better understand centriole- and cilia-related human hereditary diseases, I worked as a molecular diagnostician in a molecular diagnosis lab at Oregon Health Science University. I used next-generation sequencing (NGS) to identify gene mutations from ciliopathy patients. During this period, I learned how to run a complete molecular diagnosis, draw blood for running NGS, analyzing patient data, preparing patient reports and designing a novel disease panel to run NGS. This experience provided me with a new perspective and connected the things that I learned in the centriole and cilia field, from biochemistry to molecular biology to clinical diagnosis. Most importantly, this experience allowed me to realize that so many people suffer from ciliopathy disease.

    I am currently a Postdoctoral Scholar with Dr. Peter Jackson in the Department of Microbiology and Immunology at Stanford University and collaborate with Dr. Raul Andino in the Department of Microbiology and Immunology at University of California, San Francisco. I study the molecular mechanism of respiratory virus infections, including respiratory syncytial virus (RSV), parainfluenza virus (PIV), and SARS-CoV-2, in the human airway epithelium using cell biological and proteomics approaches to identify potential targets for antiviral drug development.