School of Medicine


Showing 1-6 of 6 Results

  • Aroosa Zamarud, MD

    Aroosa Zamarud, MD

    Visiting Instructor, Neurosurgery

    BioAroosa Zamarud is an MD and completed her undergraduate education at Bannu Medical College, Khyber Medical University, Pakistan. After her graduation, and one year of medical internship, she worked as a Medical Officer in a charity run Hospital, Zubaida Khaliq Memorial Hospital, Gilgit Baltistan, Pakistan. During her appointment there, she took medical camps to some of the remotest villages in the North of Pakistan, helping some of the most underprivileged people in the country.

    Dr. Zamarud joined the Stanford Neurosurgery department in March, 2022, as a Visiting Instructor. Her research focuses on Clinical Neurooncology and Cyber knife stereotactic radiosurgery as a treatment option for many benign and malignant brain pathologies like Vestibular Schwannoma, Sarcoma, Spinal metastases, Meningioma, Pineal and Pituitary metastases, Arteriovenous malformations, etc.

  • Quan Zhou

    Quan Zhou

    Instructor, Neurosurgery

    Current Research and Scholarly InterestsDr. Zhou has made substantial contributions to the field of biomedical engineering. Dr. Zhou conducts her research on a highly specialized area focusing on molecular imaging, which has applications in biomedical imaging and clinical oncology. Dr. Zhou’s research addresses some of the nation’s most pressing issues related to the development of effective biomedical imaging approaches for accurate diagnosis of prevalent human diseases and improving effectiveness of their treatment. Her innovations in biomedical imaging technology are important for detection and management of deadly diseases including brain, head-and-neck, pancreatic, liver and colorectal cancers as well as cardiovascular sclerosis. Her strong background in biological sciences and biomedical engineering as well as her experience in both translational and clinical research have helped her develop multiple disease-specific molecular probes and miniature imaging devices for image-guided surgery of cancers and cardiovascular plaque detection.

    Dr. Zhou’s research has led to emergence of novel solutions and opportunities, in particular, for molecular imaging of cancer and other diseases, for discovering, leveraging and integration of cancer biomarker and tumor microenvironment information, and for novel approaches to acquire real-time high-resolution contrast enhanced cancer visualization and optimization based on imaging depth, quality and speed. Dr. Zhou has been able to formulate the involved clinical and biological problems into biomedical engineering frameworks and find ways to exploit a variety of modern techniques and approaches from photoacoustic imaging, fluorescence-guided surgery, micro-electromechanical systems and biomedical instrumentation in developing elegant and effective solutions. Her work in the Neurosurgery Department and Molecular Imaging Program at Stanford involves research related to developing tumor-specific molecular probes, advanced imaging methods and therapeutic delivery systems for adult and pediatric patients with malignant brain cancers to improve margin detection, enhance resection accuracy, and improve treatment outcome.

  • J. Bradley Zuchero

    J. Bradley Zuchero

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsGlia are a frontier of neuroscience, and overwhelming evidence from the last decade shows that they are essential regulators of all aspects of the nervous system. The Zuchero Lab aims to uncover how glial cells regulate neural development and how their dysfunction contributes to diseases like multiple sclerosis (MS) and in injuries like stroke.

    Although glia represent more than half of the cells in the human brain, fundamental questions remain to be answered. How do glia develop their highly specialized morphologies and interact with neurons to powerfully control form and function of the nervous system? How is this disrupted in neurodegenerative diseases and after injury? By bringing cutting-edge cell biology techniques to the study of glia, we aim to uncover how glia help sculpt and regulate the nervous system and test their potential as novel, untapped therapeutic targets for disease and injury.

    We are particularly interested in myelin, the insulating sheath around neuronal axons that is lost in diseases like MS. How do oligodendrocytes- the glial cell that produces myelin in the central nervous system- form and remodel myelin, and why do they fail to regenerate myelin in disease? Our current projects aim to use cell biology and neuroscience approaches to answer these fundamental questions. Ultimately we hope our work will lead to much-needed therapies to promote remyelination in patients.

  • Corinna Zygourakis

    Corinna Zygourakis

    Assistant Professor of Neurosurgery

    Current Research and Scholarly InterestsMy goal is to translate research into real-world action and decision-making so that my work can impact patients and the institutions in which they receive care. With a research focus on healthcare cost and quality of care, I approach neurosurgery in a unique way—one that applies business operations, economics, and healthcare delivery principles to our field. I have pursued formal LEAN business training, and believe in the importance of working together with other departments and administrators, as well as physicians and surgeons on the hospital and national level, to effect change. During my residency, I developed and led a multi-departmental prospective study at UCSF called OR SCORE (OR Surgical Cost Reduction Project) that brought together surgeons from the neurosurgery, orthopedics and ENT departments with nurses and administrators. OR SCORE successfully reduced surgical supply costs by nearly one million dollars in its first year by providing >60 surgeons with price transparency scorecards. This work led to a first-author publication in JAMA Surgery, but more importantly, set the foundation for further quality improvement and cost reduction efforts across the UCSF hospital system.

    A volunteer neurosurgical mission trip to Guadalajara, Mexico, where limited resources create an OR environment that is strikingly more frugal than the U.S., inspired me to lead another project aimed at quantifying and reducing operating room waste at UCSF. I have also conducted research looking at the safety and outcomes of overlapping surgery, as well as several projects to define the factors underlying variation in cost for neurosurgical care using UCSF’s hospital data and national databases like the National Inpatient Sample, Vizient (formerly known as University Health Consortium), and Medicare.

    As a clinical fellow at Johns Hopkins, I continued and expanded these research efforts. I designed and implemented an Enhanced Recovery after Surgery (ERAS) protocol at the Johns Hopkins Bayview hospital. This protocol standardized care for our spine patients, emphasizing pre-operative rehabilitation, psychiatric and nutritional assessments, and smoking cessation, as well as intra- and post-operative multi-modal pain therapy, early mobilization, and standardized antibiotic and bowel regimens. I also collaborated with engineers in the Johns Hopkins Carnegie Center for Surgical Innovation to develop better algorithms for intra-operative CT imaging, and provided assistance with operations to a basic science study looking at the role of cerebrospinal fluid drainage and duraplasty in a porcine model of spinal cord injury.

    At Stanford, I am building a research group focused on: (1) perfecting paradigms for delivery of high-end technology in spinal care, including robotics and navigation, (2) implementing cost and quality strategies in large healthcare systems, and (3) computational analysis of big-data to effect real-time risk stratification and decision making in spine surgery. I'm excited to collaborate with my peers across surgical and medical departments, as well as business and engineering colleagues.