School of Medicine
Showing 41-50 of 298 Results
-
E.J. Chichilnisky
John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsFunctional circuitry of the retina and design of retinal prostheses
-
S. Charles Cho, MD
Clinical Professor, Neurology & Neurological Sciences
Clinical Professor (By courtesy), NeurosurgeryCurrent Research and Scholarly InterestsClinical research focused on peripheral nerve and muscle disorders. Also involved with prevention of cerebrovascular disesase in the intraoperative setting. Ongoing clincial studies include treatments for Amyotrophic Lateral Sclerosis (ALS), Inflammatory Demyelinating Neuropathy and HIV neuropathic pain.
-
Eun Young Choi, PhD
Instructor, Neurosurgery
Current Research and Scholarly InterestsDr. Choi is broadly interested in mapping the brain’s connectivity and characterizing its functional dynamics using advanced neuroimaging and clinical neurophysiological methods, as well as translating this information to identify individual-specific neurosurgical targets and treatment strategies using neuromodulation (e.g., deep brain stimulation). Her prior work has mapped the functional and connectional organization of the cortex, striatum, and thalamus using neuroimaging and neuroanatomical tract-tracing. A current focus is on the use of thalamic deep brain stimulation to improve memory and attention in traumatic brain injury and Alzheimer’s disease.
-
Sam Cooler
Postdoctoral Scholar, Neurosurgery
Current Research and Scholarly InterestsAnalysis of neurons in the human and macaque retina
-
Graham Creasey
Paralyzed Veterans of America Professor of Spinal Cord Injury Medicine, Emeritus
Current Research and Scholarly InterestsNeural prostheses to stimulate and record from the peripheral and central nervous system, thereby directly connecting nervous systems with electronic systems
Neural prostheses for control of bladder, bowel and sexual function after spinal cord injury -
Kyle Gabriel Daniels
Assistant Professor of Genetics and, by courtesy, of Neurosurgery (Adult Neurosurgery)
BioKyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors.
Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions.
The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells.