School of Medicine


Showing 1-10 of 21 Results

  • Axel Brunger

    Axel Brunger

    Professor of Molecular and Cellular Physiology, of Neurology, of Photon Science and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsOne of Axel Brunger's major goals is to decipher the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, combined with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.

  • Steven Chu

    Steven Chu

    William R. Kenan Jr. Professor and Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water

  • Ron Dror

    Ron Dror

    Associate Professor of Computer Science and, by courtesy, of Molecular and Cellular Physiology and of Structural Biology

    BioRon Dror is an Associate Professor of Computer Science and, by courtesy, Molecular and Cellular Physiology and Structural Biology at Stanford University, where he is also affiliated with the Institute for Computational and Mathematical Engineering, the Stanford Artificial Intelligence Lab, Bio-X, ChEM-H, and the Biophysics and Biomedical Informatics Programs. Dr. Dror's research at Stanford addresses a broad set of computational biology problems related to the spatial organization and dynamics of biomolecules and cells.

    Before joining Stanford in March 2014, Dr. Dror served as second-in-command of D. E. Shaw Research, a hundred-person company, having joined in 2002 as its first hire. At DESRES, he focused on high-performance computing and biomolecular simulation—in particular, developing technology that accelerates molecular dynamics simulations by orders of magnitude, and applying these simulations to the study of protein function, protein folding, and protein-drug interactions (part of a project highlighted by Science as one of the top 10 scientific breakthroughs of 2010).

    Dr. Dror earned a PhD in Electrical Engineering and Computer Science at MIT, an MPhil in Biological Sciences as a Churchill Scholar at the University of Cambridge, and both a BA in Mathematics and a BS in Electrical and Computer Engineering at Rice University, summa cum laude. As a student, he worked in genomics, vision, image analysis, and neuroscience. He has been awarded a Fulbright Scholarship and fellowships from the National Science Foundation, the Department of Defense, and the Whitaker Foundation, as well as a Gordon Bell Prize and several Best Paper awards.

  • Liang Feng

    Liang Feng

    Assistant Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.

  • Chris Garcia

    Chris Garcia

    Younger Family Professor and Professor of Structural Biology

    Current Research and Scholarly InterestsStructural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.

  • Miriam B. Goodman

    Miriam B. Goodman

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe study the molecular events that give rise to the sensation of touch and temperature in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We also collaborate with Pruitt's group in Mechanical Engineering to develop and fabricate novel devices for the study of sensory transduction.

  • John Huguenard

    John Huguenard

    Professor of Neurology, of Neurosurgery and, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe are interested in the neuronal mechanisms that underlie synchronous oscillatory activity in the thalamus, cortex and the massively interconnected thalamocortical system. Such oscillations are related to cognitive processes, normal sleep activities and certain forms of epilepsy. Our approach is an analysis of the discrete components (cells, synapses, microcircuits) that make up thalamic and cortical circuits, and reconstitution of components into in silico computational networks.

  • Brian Kobilka

    Brian Kobilka

    Helene Irwin Fagan Chair in Cardiology

    Current Research and Scholarly InterestsStructure, function and physiology of adrenergic receptors.

  • Richard Lewis

    Richard Lewis

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsWe study molecular mechanisms of calcium signaling with a focus on store-operated CRAC channels and their essential roles in T cell development and function. Currently we aim to define the molecular mechanism for CRAC channel activation and the means by which calcium signal dynamics mediate specific activation of transcription factors and T-cell genes during development.

  • Daniel V. Madison

    Daniel V. Madison

    Associate Professor of Molecular and Cellular Physiology

    Current Research and Scholarly InterestsOur laboratory is interested in the function and plasticity CNS synapses, including studies of the detailed structure and protein content of synapses in different plastic states. We also have a strong interest in the pathophysiology of Azheimer’s disease as related to endocannabinoids. We use primarily electrophysiogy and high-resolution array tomographic imaging to dissect the function of synapses undergoing changes due either to external stimuli, disease states or internal modulation.