School of Medicine


Showing 1-20 of 61 Results

  • Kimberly Allison

    Kimberly Allison

    Professor of Pathology

    Current Research and Scholarly InterestsDr. Allison’s clinical expertise is in breast pathology. Her research interests include how standards should be applied to breast cancer diagnostics (such as ER and HER2 testing), the utility of molecular panel-based testing in breast cancer, digital pathology applications and identifying the most appropriate management of specific pathologic diagnoses.

  • Leah Backhus

    Leah Backhus

    Associate Professor of Cardiothoracic Surgery (Thoracic Surgery)

    BioLeah Backhus trained in general surgery at the University of Southern California and cardiothoracic surgery at the University of California Los Angeles. She practices at Stanford Hospital and is Chief of Thoracic Surgery at the VA Palo Alto. Her surgical practice consists of general thoracic surgery with special emphasis on thoracic oncology and minimally invasive surgical techniques. She is also Co-Director of the Thoracic Surgery Clinical Research Program, and has grant funding through the Veterans Affairs Administration and NIH. Her current research interests are in imaging surveillance following treatment for lung cancer and cancer survivorship. She is a member of the National Lung Cancer Roundtable of the American Cancer Society serving as Chair of the Task Group on Lung Cancer in Women. She also serves on the Board of Directors of the Society of Thoracic Surgeons. As an educator, Dr. Backhus is the Associate Program Director for the Thoracic Track Residency and is the Chair of the ACGME Residency Review Committee for Thoracic Surgery which is the accrediting body for all cardiothoracic surgery training programs in the US.

  • Michael Bassik

    Michael Bassik

    Associate Professor of Genetics

    Current Research and Scholarly InterestsWe are an interdisciplinary lab focused on two major areas:(1) we seek to understand mechanisms of cancer growth and drug resistance in order to find new therapeutic targets(2) we study mechanisms by which macrophages and other cells take up diverse materials by endocytosis and phagocytosis; these substrates range from bacteria, viruses, and cancer cells to drugs and protein toxins. To accomplish these goals, we develop and use new technologies for high-throughput functional genomics.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Stanford ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). She is now the Baker Family Director of Stanford ChEM-H.

    Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, the ACS Award in Pure Chemistry, and the Chemistry of the Future Solvay Prize, among others.

    The Bertozzi Group develops chemical tools to study the glycobiology underlying diseases such as cancer, inflammation, tuberculosis and most recently COVID-19. She is the inventor of "bioorthogonal chemistry", a class of chemical reactions compatible with living systems that enable molecular imaging and drug targeting. Her group also developed new therapeutic modalities for targeted degradation of extracellular biomolecules, such as antibody-enzyme conjugates and Lysosome Targeting Chimeras (LYTACs). As well, her group studies NGly1 deficiency, a rare genetic disease characterized by loss of the human N-glycanase.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi cofounded Redwood Bioscience, Enable Biosciences, Palleon Pharmaceuticals, InterVenn Bio, OliLux Bio, Grace Science LLC and Lycia Therapeutics. She is also a member of the Board of Directors of Lilly.

  • Matthew Bogyo

    Matthew Bogyo

    Professor of Pathology and of Microbiology and Immunology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur lab uses chemical, biochemical, and cell biological methods to study protease function in human disease. Projects include:

    1) Design and synthesis of novel chemical probes for serine and cysteine hydrolases.

    2) Understanding the role of hydrolases in bacterial pathogenesis and the human parasites, Plasmodium falciparum and Toxoplasma gondii.

    3) Defining the specific functional roles of proteases during the process of tumorogenesis.

    4) In vivo imaging of protease activity

  • Jennifer Caswell-Jin

    Jennifer Caswell-Jin

    Assistant Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsMy research is on the translational application of next-generation sequencing technologies to breast cancer care: (1) the value of hereditary cancer genetic panel testing in clinical practice, (2) the mechanisms by which inherited genetic variants lead to breast cancer development, and (3) the analysis of somatic tumor sequencing data to inform understanding of breast tumorigenesis, metastasis, and development of resistance in response to therapeutics.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Jennifer R. Cochran

    Jennifer R. Cochran

    Shriram Chair of the Department of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology

  • Steven M. Corsello

    Steven M. Corsello

    Assistant Professor of Medicine (Oncology) and, by courtesy, of Chemical and Systems Biology

    BioI am a physician scientist and medical oncologist at Stanford University. My laboratory operates at the intersection of functional genomics and chemical biology, with the goal of advancing novel molecular mechanisms of cancer inhibition to clinical use. We aim to 1) leverage phenotypic screening and functional genomics to determine novel anti-cancer mechanisms of small molecules, 2) develop new targeted therapy approaches in gastrointestinal cancer, and 3) build a comprehensive community resource for drug repurposing discovery.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Millie Das

    Millie Das

    Clinical Associate Professor, Medicine - Oncology

    BioDr. Das specializes in the treatment of thoracic malignancies. She sees and treats patients both at the Stanford Cancer Center and at the Palo Alto VA Hospital. She is Chief of Oncology at the Palo Alto VA and also leads the VA thoracic tumor board on a biweekly basis. She has a strong interest in clinical research, serving as a principal investigator for multiple clinical and translational studies at the Palo Alto VA, and also as a co-investigator on all of the lung cancer trials at Stanford. In her free time, she enjoys spending time with her family, traveling, and running.

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Alice C. Fan

    Alice C. Fan

    Assistant Professor of Medicine (Oncology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Fan is a physician scientist who studies how turning off oncogenes (cancer genes) can cause tumor regression in preclinical and clinical translational studies. Based on her findings, she has initiated clinical trials studying how targeted therapies affect cancer signals in kidney cancer and low grade lymphoma. In the laboratory, she uses new nanotechnology strategies for tumor diagnosis and treatment to define biomarkers for personalized therapy.

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory studies the molecular basis of cancer with a focus on understanding when cancer can be reversed through targeted oncogene inactivation.

  • George A. Fisher Jr.

    George A. Fisher Jr.

    Colleen Haas Chair in the School of Medicine

    Current Research and Scholarly InterestsClinical expertise in GI cancers with research which emphasizes Phase I and II clinical trials of novel therapies but also includes translational studies including biomarkers, molecular imaging, tumor immunology and development of immunotherapeutic trials.

  • James Ford

    James Ford

    Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsMammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNA damage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.

  • Kristen N Ganjoo

    Kristen N Ganjoo

    Associate Professor of Medicine (Oncology)

    Current Research and Scholarly InterestsGiant cell tumor of the bone
    Gastrointestinal stromal tumors
    Soft tissue sarcoma
    Osteosarcoma

  • Gerald Grant, MD, FACS

    Gerald Grant, MD, FACS

    Botha Chan Endowed Professor

    Current Research and Scholarly InterestsDr. Grant directs a Blood-brain Barrier Translational Laboratory focusing on enhancing drug delivery to brain tumors in children.