School of Medicine
Showing 1-10 of 55 Results
-
Gill Bejerano
Professor of Developmental Biology, of Computer Science, of Pediatrics (Genetics) and of Biomedical Data Science
Current Research and Scholarly Interests1. Automating monogenic patient diagnosis.
2. The genomic signatures of independent divergent and convergent trait evolution in mammals.
3. The logic of human gene regulation.
4. The reasons for sequence ultraconservation.
5. Cryptogenomics to bridge medical silos.
6. Cryptogenetics to debate social injustice.
7. Managing patient risk using machine learning.
8. Understanding the flow of money in the US healthcare system. -
Jon Bernstein
Professor of Pediatrics (Genetics) and, by courtesy, of Genetics
On Partial Leave from 02/01/2023 To 11/12/2023Current Research and Scholarly InterestsMy research is focused on the diagnosis, discovery and delineation of rare genetic conditions with a focus of neurodevelopmental disorders. This work includes the application of novel computational methods and multi-omics profiling (whole genome sequencing, RNA sequencing, metabolomics). I additionally participate in an interdisciplinary project to develop induced pluripotent stem cell (iPSC) models of genetic neurodevelopmental disorders..
-
Pasqualina Colella
Basic Life Research Scientist, Pediatrics - Genetics
BioDr. Pasqualina Colella is a scientist with extensive expertise in cell therapy and gene therapy approaches for the treatment of inherited diseases. She is currently Research Scientist at Stanford University, where she is developing innovative cell therapy approaches to address neuropathic lysosomal storage diseases (LSDs) using hematopoietic stem cell transplantation (HSCT) and genome editing.
Dr. Colella received her summa cum laude Bachelor of Science degree in Biology from the University of Naples Federico II (Italy) and her PhD in Human Genetics from The Open University (UK) at the Telethon Institute of Genetics and Medicine (TIGEM, Italy). During her PhD, she focused on investigating AAV gene therapy for inherited blindness and developed novel strategies to effectively express large (> 5 kb) genes in the retina for treating Stargardt disease and Usher Syndrome type I B, both of which cause untreatable forms of blindness.
After the PhD, Dr. Colella secured prestigious Postdoctoral fellowships from the Marie Skłodowska-Curie Actions (EU) and Genethon (France). As Postdoc she developed innovative in vivo AAV gene therapy approaches based on liver gene transfer or multi-tissue gene expression to target the multi-organ manifestations of Pompe disease, a LSD that presents with neuromuscular impairment.
Dr. Colella is committed to researching innovative ways to combat genetic diseases and making a positive impact on the lives of patients.