School of Medicine


Showing 121-130 of 136 Results

  • Wenjun Wang

    Wenjun Wang

    Postdoctoral Scholar, Stem Cell Transplantation

    Current Research and Scholarly InterestsMy postdoctoral research focuses on investigating novel therapy for childhood leukemias.

  • Alexis Thomas Weiner

    Alexis Thomas Weiner

    Postdoctoral Scholar, Pathology

    Current Research and Scholarly InterestsThe planar cell polarity (PCP) signaling pathway polarizes animal cells along an axis parallel to the tissue plane, and in so doing generates long-range organization that can span entire tissues. Although its core proteins and much about their interactions are known, how PCP signaling occurs at a mechanistic level remains fundamentally mysterious. In my current project I will employ novel genetic methods to dissect the logic underlying how cellular asymmetry arises at a molecular level.

  • Mollie Woodworth

    Mollie Woodworth

    Instructor, Ophthalmology

    Current Research and Scholarly InterestsMany types of blindness result from the neurons of the retina no longer being able to communicate with the brain due to injury or disease. In mammals, the adult retina cannot make new retinal ganglion cells (the neurons that connect the retina with the brain) to replace those that are lost. In my work, I aim to learn about normal development of retinal ganglion cells and, further, to regenerate new retinal ganglion cells if they are lost in adulthood.

  • Jian Xiong

    Jian Xiong

    Postdoctoral Scholar, Chemical Engineering

    BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.