School of Medicine


Showing 11-20 of 33 Results

  • Lawrence Fung MD PhD

    Lawrence Fung MD PhD

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsDr. Lawrence Fung an assistant professor in the Department of Psychiatry and Behavioral Sciences at Stanford University. He is the director of the Stanford Neurodiversity Project, director of the Neurodiversity Clinic, and principal investigator at the Fung Lab. His work, which focuses on autism and neurodiversity, traverses from multi-modal neuroimaging studies to new conceptualization of neurodiversity and its application to clinical, education, and employment settings. His lab advances the understanding of neural bases of human socio-communicative and cognitive functions by using novel neuroimaging and bioanalytical technologies. Using community-based participatory research approach, his team devises and implements novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. His work has been supported by various agencies including the National Institutes of Health, Autism Speaks, California Department of Developmental Services, California Department of Rehabilitation, as well as philanthropy. He received his PhD in chemical engineering from Cornell University, and MD from George Washington University. He completed his general psychiatry residency, child and adolescent psychiatry fellowship, and postdoctoral research fellowship at Stanford.

  • Andrew D. Huberman

    Andrew D. Huberman

    Associate Professor of Neurobiology and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsIn 2017, we developed a virtual reality platform to investigate the neural and autonomic mechanisms contributing to fear and anxiety. That involved capturing 360-degree videos of various fear-provoking situations in real life for in-lab VR movies, such as heights and claustrophobia, as well as unusual scenarios like swimming in open water with great white sharks. The primary objective of our VR platform is to develop new tools to help people better manage stress, anxiety and phobias in real-time, as an augment to in-clinic therapies.

    In May 2018, we reported the discovery of two novel mammalian brain circuits as a Research Article published in Nature. One circuit promotes fear and anxiety-induced paralysis, while the other fosters confrontational reactions to threats. This led to ongoing research into the involvement of these brain regions in anxiety-related disorders such as phobias and generalized anxiety in humans.

    In 2020, we embarked on a collaborative effort with Dr. David Spiegel's laboratory in the Stanford Department of Psychiatry and Behavioral Sciences, aimed to explore how specific respiration patterns synergize with the visual system to influence autonomic arousal and stress, and other brain states, including sleep.

    In 2023, the first results of that collaboration were published as a randomized controlled trial in Cell Reports Medicine, demonstrating that specific brief patterns of deliberate respiration are particularly effective in alleviating stress and enhancing mood, and improving sleep.

    In a 2021, our collaboration with Dr. Edward Chang, professor and chair of the Department of Neurological Surgery at the University of California, San Francisco (UCSF), was published in Current Biology, revealing that specific patterns of insular cortex neural activity may be linked to, and potentially predict, anxiety responses.

  • Robert Malenka

    Robert Malenka

    Nancy Friend Pritzker Professor of Psychiatry and Behavioral Sciences
    On Leave from 11/01/2023 To 10/31/2025

    Current Research and Scholarly InterestsLong-lasting changes in synaptic strength are important for the modification of neural circuits by experience. A major goal of my laboratory is to elucidate the molecular events that trigger various forms of synaptic plasticity and the modifications in synaptic proteins that are responsible for the changes in synaptic efficacy.

  • Ryan Matlow

    Ryan Matlow

    Clinical Associate Professor, Psychiatry and Behavioral Sciences

    BioRyan Matlow, Ph.D., is a child clinical psychologist who serves as Director of Community Programs for Stanford’s Early Life Stress and Resilience Program, and is a faculty member in Stanford's Human Rights and Trauma Mental Health Program. His clinical and research efforts focus on understanding and addressing the impact of stress, adversity, and trauma in children, families, and communities. In particular, Dr. Matlow seeks to apply current scientific knowledge of the neurobiological and developmental impact of stress, trauma, and adversity in shaping interventions and systems of care. Dr. Matlow is focused on engaging diverse populations and providing evidence-based individual, family, and systems interventions for posttraumatic stress following interpersonal trauma, with an emphasis on efforts in school, community, and integrated care settings. He is engaged in clinical service, program development, and interdisciplinary collaboration efforts that address childhood trauma exposure in communities that have been historically marginalized, under-resourced, and/or experienced human rights violations. He has worked extensively in providing trauma-focused psychological evaluation, treatment, and advocacy services with immigrant youth and families, with a focus on immigrants from Latin American countries. Dr. Matlow is involved in the training and dissemination of Stanford's Cue Centered Therapy (Carrion, 2015), a flexible, manualized intervention addressing childhood experiences of chronic trauma.

  • Vinod Menon

    Vinod Menon

    Rachael L. and Walter F. Nichols, MD, Professor and Professor, by courtesy, of Education and of Neurology

    Current Research and Scholarly InterestsEXPERIMENTAL, CLINICAL AND THEORETICAL SYSTEMS NEUROSCIENCE

    Cognitive neuroscience; Systems neuroscience; Cognitive development; Psychiatric neuroscience; Functional brain imaging; Dynamical basis of brain function; Nonlinear dynamics of neural systems.

  • Philippe Mourrain

    Philippe Mourrain

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)

    BioExpertise: Neurobiology, Sleep sciences, Molecular Genetics, Developmental Biology, Gene Silencing/Epigenetics

    Methodology: Synapse Imaging (Two photon microscopy, Array Tomography), Calcium Imaging (Light Sheet Microscopy/SPIM, Light Field Microscopy), Optogenetics, CLARITY, Tol2 transgenesis, TALENs, CRISPR/Cas9, Video tracking and behavior computation.

  • Karen J. Parker, PhD

    Karen J. Parker, PhD

    Truong-Tan Broadcom Endowed Professor and Professor, by courtesy, of Comparative Medicine

    Current Research and Scholarly InterestsThe Parker Lab conducts research on the biology of social functioning in monkeys, typically developing humans, and patients with social impairments.

  • Kilian M Pohl

    Kilian M Pohl

    Professor (Research) of Psychiatry and Behavioral Sciences (Major Labs and Incubator)

    Current Research and Scholarly InterestsThe foundation of the laboratory of Associate Professor Kilian M. Pohl, PhD, is computational science aimed at identifying biomedical phenotypes improving the mechanistic understanding, diagnosis, and treatment of neuropsychiatric disorders. The biomedical phenotypes are discovered by unbiased, machine learning-based searches across biological, neuroimaging, and neuropsychological data. This data-driven discovery currently supports the adolescent brain research of the NIH-funded National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) and the Adolescent Brain Cognitive Development (ABCD), the largest long-term study of brain development and child health in the US. The laboratory also investigates brain patterns specific to alcohol use disorder and the human immunodeficiency virus (HIV) across the adult age range, and have advanced the understanding of a variety of brain diseases including schizophrenia, Alzheimer’s disease, glioma, and aging.