School of Medicine


Showing 21-30 of 229 Results

  • Stephen Chang, MD, PhD

    Stephen Chang, MD, PhD

    Instructor, Biochemistry
    Instructor, Biochemistry
    Instructor, Medicine - Cardiovascular Medicine

    BioPrior to a career in medicine, Dr. Chang was an English major and subsequent novelist at night. During the days, he taught literature part-time at Rutgers University, and for extra money, worked in a laboratory in NYC washing test tubes. Inspired by his laboratory mentor, he began volunteering at the hospital next door, and developed a love for interacting with patients. Through this experience, he saw how caring for others could form deep bonds between people - even strangers - and connect us in a way that brings grandeur to ordinary life.

    In addition to seeing patients, Dr. Chang is a physician-scientist devoted to advancing the field of cardiovascular medicine. His research has been focused on identifying a new genetic organism that better models human heart disease than the mouse. For this purpose, he has been studying the mouse lemur, the smallest non-human primate, performing cardiovascular phenotyping (vital signs, ECG, echocardiogram) on lemurs both in-bred (in France) and in the wild (in Madagascar) to try to identify mutant cardiac traits that may be heritable - and in the process, characterize the first high-throughput primate model of human cardiac disease.

  • Ming Li (Estella) Chen

    Ming Li (Estella) Chen

    Postdoctoral Scholar, Cardiovascular Medicine

    BioI am an MD from Chung Shan Medical University, Taiwan. Before coming to Stanford, I obtained my MS degree in epidemiology at Harvard T.H. Chan School of Public Health, Boston, MA, where I completed graduate training in clinical, pharmacologic, and genetic epidemiology, and pursued advanced skills in biostatistics and causal inference.

    My past research focused on real-world epidemiology studies using patient registries and national health insurance databases to elucidate the predictors or risk factors of immunologic diseases. For my graduate study, I conducted pharmacoepidemiology studies using electronic health record (EHR) data to elucidate the predictors of anti-drug antibodies development and its correlation to autoimmunity, to identify the generation of immunogenicity that may impact the effectiveness of monoclonal antibody therapies in individuals with autoimmune diseases. I gained experience in genetic data manipulation to investigate polymorphisms in response to monoclonal antibody therapies in asthma patients.

    At Stanford, I am involved in research on the identification of molecular determinants of cardiometabolic diseases.

  • Paul Cheng MD PhD

    Paul Cheng MD PhD

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioDr. Cheng is a Cardiologist at Stanford University School of Medicine in the Department of Medicine and a member of the Cardiovascular Research Institute. Dr. Cheng received his BEng in Chemical Engineering and BSc in biology at MIT. He subsequently completed his MD/PhD at UCSF working in the Srivastava lab studying how extracellular morphogenic signals affect cardiac development and fate determination of cardiac progenitors. Dr. Cheng completed internal medicine residency and cardiology fellowship at Stanford. His current clinical focus is in amyloidosis and cardio-oncology. During his post doctoral research in the Quertermous lab, he pioneered the application of single cell transcriptomic and epigenetic techniques to study human vascular diseases including atherosclerosis and aneurysm, and applied these techniques to investigate molecular mechanisms behind genetic risk factors for several human vascular diseases including atherosclerosis, and aortopathies such as Marfan's and Loey-Dietz syndrome.

    The Cheng lab takes a patient-to-bench-to-bedside approach to science. The lab focuses on elucidating new pathogenic mechanisms of human vascular diseases through combing human genetics and primary vascular disease tissues, with high-resolution transcriptomic and epigenetic profiling to generate novel hypothesis that are then tested in a variety of in vitro and in vivo models. The lab is focused on two broad questions: (1) understanding the biological underpinning of the differences in diseases propensities of different arterial segments in an individual (i.e. why do you have atherosclerosis and aneurysms in certain segments but not others), and (2) understanding the role of perivascular fibroblast in human vascular diseases.