School of Medicine
Showing 141-160 of 161 Results
-
Peter Tass
Professor of Neurosurgery
BioDr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson’s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.
-
Nicholas Telischak, MD, MS
Clinical Associate Professor, Radiology
Clinical Associate Professor (By courtesy), NeurosurgeryBioA native of the Bay Area, Dr. Nick Telischak is a dual fellowship-trained neurointerventional surgeon and neuroradiologist at Stanford Health Care. With board certifications in radiology and neuroradiology, he serves as a clinical associate professor in the Department of Radiology, and, by courtesy of the Department of Neurosurgery, at Stanford School of Medicine.
Dr. Telischak specializes in diagnosing and treating artery disorders in the brain and spine, including brain aneurysms, arteriovenous malformations (AVM), and dural arteriovenous fistula (dAVF), and stroke. Dr. Telischak also specializes in venous disorders in the brain including idiopathic intracranial hypertension (IIH). He also has a special interest in pulsatile tinnitus, a whooshing sound in the ears that occurs in rhythm with the heartbeat. Dr. Telischak also treats painful spinal (vertebral) fractures, spinal metastases (tumors resulting from cancer elsewhere in the body), and congenital vascular malformations (blood vessel abnormalities that are present at birth). He treats these conditions using minimally invasive, image-guided procedures and state-of-the-art technology.
Prior to joining Stanford Health Care, Dr. Telischak helped develop the Stroke Program at California Pacific Medical Center and Mills-Peninsula Medical Center, giving him a broad perspective on medical care systems within the Bay Area.
Dr. Telischak’s research focuses on:
• Identifying biomarkers to diagnose large vessel occlusion stroke (stroke in one of the large arteries in the brain)
• Noninvasive MRI techniques for diagnosing idiopathic intracranial hypertension (high pressure within the skull)
He is also the principal investigator for a study examining the efficacy of vertebroplasty and kyphoplasty for the treatment of painful vertebral compression fractures.
In addition, Dr. Telischak holds a master’s degree in bioengineering. He has worked with several companies pioneering new devices to treat brain aneurysms, vascular malformations, and strokes caused by blood clots, as well as new treatments for venous disorders in the brain caused by idiopathic intracranial hypertension.
Dr. Telischak has published more than 20 peer-reviewed articles and has been invited to present locally, nationally, and internationally at meetings for the Society of NeuroInterventional Surgery, American Society of Neuroradiology, and Jornada de Stroke in Asuncion, Paraguay, where he has served as visiting faculty. -
Suzanne Tharin
Associate Professor of Neurosurgery
Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.
-
Reena Thomas, MD PhD
Clinical Professor, Adult Neurology
Clinical Professor (By courtesy), NeurosurgeryCurrent Research and Scholarly Interests-Neuro Oncology Immunotherapy
-Medical Education -
Zachary David Threlkeld
Clinical Associate Professor, Adult Neurology
Clinical Associate Professor (By courtesy), NeurosurgeryBioDr. Threlkeld cares for critically ill patients with acute neurologic illness, including traumatic brain injury, stroke, intracerebral hemorrhage, and epilepsy. He completed his residency training in neurology at the University of California, San Francisco, and joined the Stanford Neurocritical Care program after completing fellowship training in neurocritical care at Massachusetts General Hospital and Brigham and Women’s Hospital in Boston. He has a particular clinical and research interest in traumatic brain injury. His research uses advanced imaging modalities like functional magnetic resonance imaging (fMRI) to better understand disorders of consciousness.
-
Anand Veeravagu, MD, FAANS, FACS
Associate Professor of Neurosurgery and, by courtesy, of Orthopaedic Surgery
Current Research and Scholarly InterestsThe focus of my laboratory is to utilize precision medicine techniques to improve the diagnosis and treatment of neurologic conditions. From traumatic brain injury to spinal scoliosis, the ability to capture detailed data regarding clinical symptoms and treatment outcomes has empowered us to do better for patients. Utilize data to do better for patients, that’s what we do.
Stanford Neurosurgical Ai and Machine Learning Lab
http://med.stanford.edu/neurosurgery/research/AILab.html -
Chitra Venkatasubramanian, MBBS, MD, MSc, FNCS
Clinical Professor, Adult Neurology
Clinical Professor (By courtesy), NeurosurgeryCurrent Research and Scholarly InterestsI am interested in the study of the radiological characteristics and temporal profile of edema/ tissue injury in the perihematomal area around spontaneous intracerebral hemorrhage. I am also interested in developing protocols for emergent reversal of anticoagulation in a life-threatening hemorrhage situation.
-
Hannes Vogel MD
Professor of Pathology and of Pediatrics (Pediatric Genetics) and, by courtesy, of Neurosurgery, Neurology and Neurological Sciences and of Comparative Medicine
Current Research and Scholarly InterestsMy research interests include nerve and muscle pathology, mitochondrial diseases, pediatric neurooncology, and transgenic mouse pathology.
-
Xinnan Wang
Professor of Neurosurgery
Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.
-
Jenli Dawn Waters, MD
Clinical Assistant Professor, Neurosurgery
BioDr. Waters is a board-certified, fellowship-trained neurosurgeon with the Neurosurgery Program at Stanford Health Care. She is also a clinical assistant professor of neurosurgery in the Department of Neurosurgery at Stanford University School of Medicine.
Dr. Waters specializes in treating a wide range of spinal conditions. These treatments include surgery to relieve numbness or pain related to pressure on the spinal cord and procedures to repair or stabilize the spinal column (spine fusion). Her areas of expertise also include diagnosis and treatment of traumatic brain injury and brain and spinal cancers.
Dr. Waters’ research experience includes helping to develop effective strategies for diagnosing
and treating patients with different neurological cancers, including glioblastomas. As a subspecialty medical expert for spine and neurosurgery, she successfully advocated for insurance coverage of state-of-the-art, minimally invasive approaches to treating epilepsy and brain tumors.
Dr. Waters has published her work in peer-reviewed journals, including the Journal of Neurosurgery and the Journal of Neuro-Oncology. She has also authored and co-authored chapters in numerous books describing neurosurgical techniques and the diagnosis and treatment of various neurological conditions, including brain and spinal cord tumors.
Dr. Waters is a member of the Congress of Neurological Surgeons. -
Kenneth Weber, DC, PhD
Assistant Professor (Research) of Anesthesiology, Perioperative and Pain Medicine (Adult Pain) and, by courtesy, of Neurosurgery (Adult Neurosurgery) and of Radiology (Neuroimaging and Neurointervention)
BioDr. Weber's research seeks to develop markers of pain and sensorimotor function using machine-learning and advanced brain, spinal cord, and musculoskeletal magnetic resonance imaging. Dr. Weber aims to use these techniques to better understand the neuropathology of pain and neurological conditions and discover more effective treatments and preventative strategies.
-
Francis Robert Willett
Assistant Professor of Neurosurgery
BioFrank Willett is co-director of the Neural Prosthetics Translational Laboratory. Our group develops brain-computer interfaces (BCIs) to restore movement and communication to people with neurological disorders. Recent contributions include handwriting and speech-based BCIs that set new records for communication speed and accuracy in people with paralysis. More broadly, we are interested in computational approaches to understanding brain function and recordings, with a focus on how the human brain represents movement and language.
-
Thomas J. Wilson
Clinical Professor, Neurosurgery
Clinical Professor (By courtesy), Adult NeurologyBioDr. Thomas J. Wilson was born in Omaha, Nebraska. He attended the University of Nebraska College of Medicine, earning his MD with highest distinction. While a medical student, he was awarded a Howard Hughes Medical Institute Research Training Fellowship and spent a year in the lab of Dr. Rakesh Singh at the University of Nebraska. He was also elected to the prestigious Alpha Omega Alpha Honor Medical Society. He completed his residency training in neurological surgery at the University of Michigan and was mentored by Dr. Lynda Yang and Dr. John McGillicuddy in peripheral nerve surgery. Following his residency, he completed a fellowship in peripheral nerve surgery at the Mayo Clinic in Rochester, Minnesota, working with Dr. Robert Spinner. He is now Clinical Associate Professor and Co-Director of the Center for Peripheral Nerve Surgery at Stanford University. He also holds a Master of Public Health (MPH) degree from the Bloomberg School of Public Health at Johns Hopkins University, with focused certificates in Clinical Trials and Health Finance and Management. His research interests include peripheral nerve outcomes research, clinical trials advancing options for patients with peripheral nerve pathologies and spinal cord injuries, and translational research focused on improved imaging techniques to assist in diagnosing nerve pain and other peripheral nerve conditions. His clinical practice encompasses the treatment of all peripheral nerve pathologies, including entrapment neuropathies, nerve tumors, nerve injuries (including brachial plexus injuries, upper and lower extremity nerve injuries), and nerve pain. Dr. Wilson enjoys working in multi-disciplinary teams to solve complex problems of the peripheral nervous system. His wife, Dr. Monique Wilson, is a practicing dermatologist in the Bay Area.
-
Albert J. Wong, M.D.
Professor of Neurosurgery
Current Research and Scholarly InterestsOur goal is to define targets for cancer therapeutics by identifying alterations in signal transduction proteins. We first identified a naturally occurring mutant EGF receptor (EGFRvIII) and then delineated its unique signal transduction pathway. This work led to the identification of Gab1 followed by the discovery that JNK is constitutively active in tumors. We intiated using altered proteins as the target for vaccination, where an EGFRvIII based vaccine appears to be highly effective.
-
Adela Wu
Clinical Assistant Professor, Neurosurgery
Current Research and Scholarly InterestsDr. Wu's current research aims include integrating palliative care practices and communication training in surgical subspecialties and surgical education, investigating quality-of-life metrics and patient outcomes, and identifying and mitigating disparities in treatment patterns for surgical pathologies and utilization of palliative care resources.
-
Moss Zhao
Instructor, Neurosurgery
BioDr. Moss Zhao is an Instructor at Department of Neurosurgery, Stanford University. He develops cutting-edge and clinically viable imaging technologies to improve the diagnosis and treatment of cerebrovascular diseases across the lifespan. His specific areas of expertise include physiological modeling, arterial spin labeling, Bayesian inference, PET/MRI, and artificial intelligence. His scientific contributions could significantly improve the early detection of strokes and dementia as well as enrich the knowledge of brain development in the first two decades of life.
Dr. Zhao received his DPhil at St Cross College of University of Oxford under the supervision of Prof. Michael Chappell. As an alumni mentor, he supports the career development of students of his alma mater. Since 2016, he has presented his work to more than 3000 delegates at international conferences and held leadership positions in professional societies. His research and teaching are supported by the American Heart Association, the National Institutes of Health, and the European Cooperation in Science and Technology. -
J. Bradley Zuchero
Associate Professor of Neurosurgery
Current Research and Scholarly InterestsWe are primarily focused on understanding myelinating glia (oligodendrocytes and Schwann cells). How is myelin formed, dynamically remodeled to support learning, and why does regeneration of myelin fail in disease? We are also interested in understanding novel roles of myelin in the nervous system, beyond its textbook role as an electrical insulator. We combine in vivo and primary culture models with the generation of new cell biology tools to answer these questions.