School of Medicine
Showing 161-180 of 181 Results
-
Jian Xiong
Postdoctoral Scholar, Chemical Engineering
BioI thrive to understand the roles of lysosomes in physiological and pathological conditions. Lysosomes are both degradation compartment and metabolic controlling hub, and dysregulation of lysosomal functions are frequently implicated in a vast number of diseases including neurodegenerative diseases, however, the systematic knowledge of the molecular mechanism by which lysosomal contributes to these diseases is lacking. Ion channels are the primary mediators of neuronal activity, defects in neuronal ion channel activity are linked with many kinds of neurodegenerative diseases. Interestingly, besides typical ion channels that are involved in the neuronal activity, defects in lysosomal ion channels, such as TRPML1, CLN7 and CLC-7 are also implicated in neuropathy. My previous work as Ph.D student in University of Texas MD Anderson Cancer Center focused on regulation of lysosomal function by ion channels and metabolites. I discovered a mechanism of lysosomal Na+ channel regulate mTORC1 activation by regulating lysosomal amino acid accumulation. I also discovered role of glutamine in controlling lysosomal degradation capacity. In the meantime, I developed novel methods to isolate organelles. My ultimate research goal is to understand the key developmental pathways and how alterations in gene sequences and expression contribute to human disease, therefore, I am pursuing independent academic researcher as my career goal. Starting Feb 2022, I work with Dr. Monther Abu-Remaileh at Stanford University on role of lysosomes in neurodegenerative diseases. I use genetics, chemical biology and omics approaches to study lysosome function under various physiological and pathological conditions, especially age-associated neurodegenerative disorders, and monogenic neurodegenerative lysosome storage diseases. In Stanford, I aim to integrate ionic regulation, metabolomic regulation and functional proteomic regulation to systematically understand the biology of lysosome in physiological conditions and pathological conditions.
-
Liu Yang
Postdoctoral Scholar, Anesthesiology, Perioperative and Pain Medicine
Current Research and Scholarly InterestsMy current focus lies in analyzing bedside monitoring waveforms and electronic health record data to understand their correlations with adverse conditions in premature infants, and to explore effective solutions that can enhance the outcomes for these vulnerable patients.
-
Kelly H. Yoo, MD, PhD
Postdoctoral Scholar, Neurosurgery
BioDr. Kelly H. Yoo is a postdoctoral scholar in the Department of Neurosurgery at Stanford University, specializing in innovative therapeutic strategies for neurosurgical pathologies. She earned her M.D. and Ph.D. from Heidelberg University School of Medicine, where her doctoral research focused on combining CAR T cell immunotherapy with ibrutinib and a reactive oxygen species accelerator, PipFcB, for hematologic malignancies. Graduating in the top 1% of her class, Dr. Yoo was recruited early for her residency in neurosurgery, where she honed her expertise in the interdisciplinary application of combinatorial treatment strategies.
Building on the knowledge she gained during her doctoral training, she worked to integrate CAR T cell therapy with bevacizumab, temozolomide chemotherapy, and radiation therapy for neurosurgical patients with primary and recurrent glioblastoma. As part of the clinician-scientist track, Dr. Yoo has completed several certifications, including Good Clinical Practice, the Principal Investigators Course, the Clinical Trial Investigators Course, and the Munich Investigators Course. These experiences have equipped her to design translational research that effectively bridges the gap between bench and bedside.
Recognized as a top 0.1% resident by the Baden-Württemberg Medical Association for her exceptional clinical and research performance, Dr. Yoo joined the Department of Neurosurgery at Stanford University to advance her career through a postdoctoral fellowship. -
Astrid Nicole Zamora
Postdoctoral Scholar, Epidemiology
BioDr. Astrid N. Zamora is a public health researcher and epidemiologist. Her work has utilized robust birth cohort data to examine associations between diet and environmental pollutants with sleep and metabolic health outcomes among adolescents and midlife women.
Following her Master of Public Health degree at UC Berkeley School of Public Health, Dr. Zamora completed her PhD at the University of Michigan School of Public Health. As a doctoral trainee at Michigan, her dissertation research, funded by a Research Supplement to Promote Diversity in Health-Related Research from NIH/NIEHS, focused on examining the interplay between exposure to endocrine-disrupting chemicals, sleep, and metabolic health risk among pubertal adolescents and peri-menopausal women from Mexico City.
As a Propel postdoctoral scholar at Stanford University School of Medicine, Dr. Zamora is receiving training in RCT study design and citizen science methods, learning how to bridge her training in epidemiology with community-based research approaches, thereby ensuring that her research agenda maintains a meaningful connection to the community and its real-world context. The goal of her current research, bolstered by her previous and ongoing training, is to explore the interconnections between diet, the built environment, and physical activity. She is particularly focused on understanding how these factors relate to psychosocial and cardiometabolic health amongst Latinx communities across the life course. -
Chongyang Zhang
Postdoctoral Scholar, Cardiology
BioDr. Zhang is a Postdoctoral Scholar at RabLab in the cardiopulmonary division. She has a PhD in Pharmacology from University of Rochester, NY. She has research in cardiovascular research and chronobiology published in high impact peer-reviewed journals. She is recipient of honors including predoctoral fellowship from AHA, Travel Grant for Early Career Investigators from Council on Arteriosclerosis, Thrombosis, and Vascular Biology. She has served as ad hoc reviewer for more than 40 manuscripts for reputed journals.
-
Jiayuan Zhao
Postdoctoral Scholar, Psychiatry
BioDr. Jiayuan(Lyrid) Zhao is a clinical psychologist and a postdoctoral scholar for the Stanford Neurodiversity Project.
-
Moss Zhao
Instructor, Neurosurgery
BioDr. Moss Zhao is an Instructor at Department of Neurosurgery, Stanford University. He develops cutting-edge and clinically viable imaging technologies to improve the diagnosis and treatment of cerebrovascular diseases across the lifespan. His specific areas of expertise include physiological modeling, arterial spin labeling, Bayesian inference, PET/MRI, and artificial intelligence. His scientific contributions could significantly improve the early detection of strokes and dementia as well as enrich the knowledge of brain development in the first two decades of life.
Dr. Zhao received his DPhil at St Cross College of University of Oxford under the supervision of Prof. Michael Chappell. As an alumni mentor, he supports the career development of students of his alma mater. Since 2016, he has presented his work to more than 3000 delegates at international conferences and held leadership positions in professional societies. His research and teaching are supported by the American Heart Association, the National Institutes of Health, and the European Cooperation in Science and Technology. -
Quan Zhou
Instructor, Neurosurgery
Current Research and Scholarly InterestsCurrent Research Focus: molecular targeted theranostic imaging of brain tumor and enhanced drug delivery
Areas of Insterests: molecular imaging, theranostics, fluorescence-guided surgery, brain tumor, drug delivery
Dr. Zhou has made substantial contributions to the growing biomedical research field of Molecular Imaging. Molecular imaging emerged in the mid twentieth century as a highly specialized discipline at the intersection of molecular biology and in vivo imaging, focusing on imaging molecules of medical interest within intact living subjects. Dr. Zhou’s research addresses some of the nation’s most pressing issues related to the development of effective approaches for accurate detection of human diseases and improving their treatment outcome. Her innovations in molecular imaging technology enables the visualization, characterization, and quantification of biologic processes taking place at the cellular and subcellular levels. The multiple and numerous potentialities of Quan’s work are applicable to the diagnosis of diseases such as cancer, neurological and cardiovascular diseases. Her strong education background in biological sciences and biomedical engineering followed by postdoctoral training in translational and clinical research have helped her develop multiple disease-specific molecular probes and imaging strategies for early cancer diagnosis, image-guided surgery, therapeutic delivery prediction and at-risk cardiovascular plaque detection. Her research also contributes to improving the treatment of these disorders by testing and optimizing the execution of new interventions. Her work is expected to have a major economic impact due to earlier disease detection and personalized therapy.
Dr. Zhou’s research has led to emergence of novel solutions and opportunities, in particular, for molecular imaging of cancer and other diseases, for discovering, leveraging and integration of cancer biomarker and tumor microenvironment information, and for novel approaches to acquire real-time high-resolution contrast enhanced visualization of tumor margin and optimization based on imaging depth, quality and speed. Dr. Zhou has been able to formulate the involved clinical and biological problems into biomedical engineering frameworks and find ways to exploit a variety of modern techniques and approaches from photoacoustic imaging, fluorescence-guided surgery, micro-electromechanical systems and therapeutic delivery strategies in developing elegant and effective solutions. Her work in the Neurosurgery Department and Molecular Imaging Program at Stanford involves research related to developing tumor-specific molecular probes, advanced imaging methods and therapeutic delivery systems for adult and pediatric patients with malignant brain cancers to improve margin detection, enhance resection accuracy, and improve treatment outcome. -
Wenjuan Zhu
Postdoctoral Scholar, Cardiovascular Institute
BioBioinformatics scientist