SLAC National Accelerator Laboratory
Showing 61-70 of 78 Results
-
Aaron Roodman
Professor of Particle Physics and Astrophysics
BioAaron Roodman is a professor of Particle Physics & Astrophysics at Stanford’s SLAC National Accelerator Laboratory. Trained in experimental particle physics, he spent two decades studying differences between Matter and antiMatter, before turning his research to astrophysics and cosmology. Roodman’s current research focuses on the study of Dark Energy using images from large optical telescope surveys, such as the Dark Energy Survey and the upcoming Legacy Survey of Space and Time. He is also responsible for the assembly and testing of the world’s largest digital camera, the Vera C. Rubin Observatory's LSST Camera.
-
Philip Schuster
Professor of Particle Physics and Astrophysics
BioProfessor Schuster is a theoretical physicist focused on identifying dark matter and its properties, developing concepts for new experimental tests of physics beyond the Standard Model, and studying novel theories of long-range forces. He is also directly involved in several experimental efforts as co-spokesperson for APEX, a founding member and physics coordinator for LDMX, and as a founding member of HPS.
Prospective graduate students interested in research rotations should contact Professor Schuster directly. Recent research directions include new ideas to detect axions, milli-charge dark matter, the use of novel accelerator experiments to search for light WIMP-like dark matter, and generalizations of gauge theories that include massless particles with continuous spin. Publications are listed on INSPIRE.
Professor Schuster is also chair of the Particle Physics & Astrophysics department at Stanford’s SLAC National Accelerator Laboratory. -
Georgios Skiniotis
Professor of Molecular and Cellular Physiology, of Structural Biology and of Photon Science
BioThe Skiniotis laboratory seeks to resolve structural and mechanistic questions underlying biological processes that are central to cellular physiology. Our investigations employ primarily cryo-electron microscopy (cryoEM) and 3D reconstruction techniques complemented by biochemistry, biophysics and simulation methods to obtain a dynamic view into the macromolecular complexes carrying out these processes. The main theme in the lab is the structural biology of cell surface receptors that mediate intracellular signaling and communication. Our current main focus is the exploration of the mechanisms responsible for transmembrane signal instigation in cytokine receptors and G protein coupled receptor (GPCR) complexes.
-
Edward I. Solomon
Monroe E. Spaght Professor of Chemistry and Professor of Photon Science
Current Research and Scholarly InterestsProf. Solomon's work spans physical-inorganic, bioinorganic, and theoretical-inorganic chemistry, focusing on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has advanced our understanding of metal sites involved in electron transfer, copper sites involved in O2 binding, activation and reduction to water, structure/function correlations over non-heme iron enzymes, and correlation of biological to heterogeneous catalysis.