Stanford Doerr School of Sustainability
Showing 1-9 of 9 Results
-
Ilenia Battiato
Associate Professor of Energy Science Engineering
Current Research and Scholarly InterestsEnergy and environment (battery systems; superhydrophobicity and drag reduction; carbon sequestration); multiscale, mesoscale and hybrid simulations (multiphase and reactive transport processes); effective medium theories; perturbation methods, homogenization and upscaling.
-
Isabela Beine
Masters Student in Energy Science and Engineering, admitted Autumn 2024
BioResearching hydrogen storage in porous media. Interest in energy storage solutions for renewable energy sources.
-
Sally Benson
Precourt Family Professor, Professor of Energy Science Engineering and Senior Fellow at the Woods Institute for the Environment
Current Research and Scholarly InterestsMy research is focused on reducing the risks of climate change by developing energy supplies with low carbon emissions. Students and post-doctoral fellows in my research group work on carbon dioxide storage, energy systems analysis, and pathways for transitioning to a low-carbon energy system.
-
Stacey Bent
Vice Provost, Graduate Education & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science and Engineering and, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry
BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.
-
Karan Bhuwalka
Research Engineer
BioDr. Karan Bhuwalka leads the materials supply chain modeling at STEER, a research group that conducts rigorous techno-economic analysis to guide investment, innovation, and policy for the energy transition. Karan's research integrates economics, statistics, manufacturing and materials science to identify pathways to sustainably scale-up critical minerals production. Scaling-up energy supply chains rapidly while minimising life-cycle impacts requires aligning technology, markets and policies. STEER takes a systems approach that links engineering process models with supply and demand considerations to inform decision-making under uncertainty. Karan's current work is focused on modeling graphite production. Previous work spans lithium, nickel, recycled plastics systems and Bayesian modeling to reduce uncertainity in material demand.
-
Adam Brandt
Professor of Energy Science Engineering
Current Research and Scholarly InterestsGreenhouse gas emissions, energy systems optimization, mathematical modeling of resource depletion, life cycle analysis