Stanford Doerr School of Sustainability


Showing 11-15 of 15 Results

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Jennifer Milne

    Jennifer Milne

    Associate Director for Advanced Research Projects, Precourt Institute for Energy

    BioJennifer is a scientist with more than a decade's experience in identifying research needs in energy and shaping the energy research landscape at Stanford. Jennifer leads the Advanced Research Projects at the Precourt Institute for Energy, working with the Director of Precourt and other stakeholders to foster energy research to reduce greenhouse gases and enable the energy transition. In 2023, she joined the technology team of the Sustainability Accelerator, as a key team member tasked with identifying solutions with potential for real-world impact across broad sustainability challenges.

    Jennifer is a technical resource for energy related and carbon removal projects across the University and an advisor in the bioenergy area - this foundational experience she gained during her time as an energy analyst with the Global Climate and Energy Project. Here, from 2007 onwards, she learned about energy supply, conversion, and exergy destruction. She led the bioenergy area of the portfolio and contributed more broadly to the development of a fundamental energy research portfolio across all energy areas. Prior to joining Global Climate and Energy Project she was a post-doctoral scholar at the Carnegie Institution for Science, Department of Plant Biology, at Stanford University. Jennifer comes from a biochemistry and plant science background, where she contributed to the discovery of the role of polysaccharides in guard cell wall function and holds a Ph.D. in Biology from the University of York, U.K. and a Bachelor of Science in Biochemistry (First Class Honors) from the University of Stirling, U.K.

  • Liang Min

    Liang Min

    Managing Director Bits & Watts Initiative, Precourt Institute for Energy

    Current Role at StanfordManaging Director for the Bits and Watts Initiative, Precourt Institute for Energy
    Managing Director for the Net-Zero Alliance, Stanford Doerr School of Sustainability

  • Reginald Mitchell

    Reginald Mitchell

    Professor of Mechanical Engineering, Emeritus

    BioProfessor Mitchell's primary area of research is concerned with characterizing the physical and chemical processes that occur during the combustion and gasification of pulverized coal and biomass. Coals of interest range in rank from lignite to bituminous and biomass materials include yard waste, field and seed crop residues, lumber mill waste, fruit and nut crop residues, and municipal solid waste. Experimental and modeling studies are concerned with char reactivity to oxygen, carbon dioxide and steam, carbon deactivation during conversion, and char particle surface area evolution and mode of conversion during mass loss.

    Mitchell’s most recent research has been focused on topics that will enable the development of coal and biomass conversion technologies that facilitate CO2 capture. Recent studies have involved characterizing coal and biomass conversion rates in supercritical water environments, acquiring the understanding needed to develop chemical looping combustion technology for applications to coals and biomass materials, and developing fuel cells that use coal or biomass as the fuel source. Studies concerned with characterizing coal/biomass blends during combustion and gasification processes are also underway.

    Professor Mitchell retired from Stanford University in July 2020, after having served over 29 years as a professor in the Mechanical Engineering Department.