Stanford University
Showing 101-110 of 555 Results
-
Robert Castro
Clinical Professor, Pediatrics - Neonatal and Developmental Medicine
Current Research and Scholarly InterestsNeonatal Fluid Balance
Surfactant
Lung Fluid Reabsorption -
Jennifer Caswell-Jin
Assistant Professor of Medicine (Oncology)
Current Research and Scholarly InterestsMy research is on the translational application of next-generation sequencing technologies to breast cancer care: (1) the value of hereditary cancer genetic panel testing in clinical practice, (2) the mechanisms by which inherited genetic variants lead to breast cancer development, and (3) the analysis of somatic tumor sequencing data to inform understanding of breast tumorigenesis, metastasis, and development of resistance in response to therapeutics.
-
John Robert Caton
Clinical Associate Professor, Pediatrics - Cardiology
BioI am a general Pediatric Cardiologist providing clinical care for a wide variety of congenital and acquired heart disease. I see patients in the outpatient clinic and the inpatient Cardiology Acute Care Unit. I also interpret echocardiograms and exercise studies performed at LPCH.
-
Lynette Cegelski
Professor of Chemistry and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.
Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria. -
Sierra Mei Lin Centkowski, MD
Clinical Assistant Professor, Dermatology
BioDr. Sierra Mei Lin Centkowski is a board-certified Clinical Assistant Professor of Dermatology at Stanford University. She received both her medical degree and Master’s in Bioethics from the Perelman School of Medicine at the University of Pennsylvania and completed her dermatology residency at Stanford. Her clinical interests include general dermatology, including skin cancer, acne, psoriasis, atopic dermatitis and dermatologic surgery. She believes that patient empowerment and partnership provide the foundation for effective, compassionate and holistic care.
-
Alma-Martina Cepika
Instructor, Pediatrics - Stem Cell Transplantation
BioDr. Cepika is an immunologist with an extensive background in translational research, autoimmunity, autoinflammation, and human systems immunology. Her goal is to understand the mechanisms governing immunological tolerance, and to leverage this knowledge to cure currently incurable diseases.
Dr. Cepika received her MD degree and a PhD in Immunology from the University of Zagreb School of Medicine in Croatia. There, she focused on the immunomonitoring of patients with lupus, identifying how circulating DNA levels changed with therapy. Subsequently, she joined the lab of Dr. Virginia Pascual at the Baylor Institute for Immunology Research in Dallas, Texas. Dr. Pascual had previously discovered that IL-1beta is a key pathogenic player in systemic juvenile idiopathic arthritis (sJIA), but the immune alterations contributing to IL-1beta-mediated inflammation remained unknown. To address this, Dr. Cepika developed a 3D in vitro stimulation assay to evaluate immune responses of blood leukocytes of pediatric sJIA patients. In combination with integrated bioinformatics analysis, this approach identified aberrant cellular responses, transcriptional pathways and genes that shed new light on immune dysregulation in sJIA. This assay (tollgene.org) can be further applied to dissect underlying immunopathogenic mechanisms in many human disorders.
Currently, Dr. Cepika is an Instructor in the Pediatric Division of Stem Cell Biology and Regenerative Medicine at Stanford University School of Medicine. There, she is working to uncover the underlying molecular mechanisms that govern the differentiation and function of antigen-inducible regulatory T cells called type 1 regulatory T (Tr1) cells, and use this knowledge to design Tr1 cell-based therapies to improve the outcomes of patients with cancer, autoimmunity, or receiving allogeneic cell or organ transplants.