Stanford University
Showing 551-559 of 559 Results
-
Christina Curtis
RZ Cao Professor, Professor of Genetics and of Biomedical Data Science
Current Research and Scholarly InterestsThe Curtis laboratory for Cancer Computational and Systems Biology is focused on the development and application of innovative experimental, computational, and analytical approaches to improve the diagnosis, treatment, and early detection of cancer.
-
Murray Connelly Cutforth
Physical Science Research Scientist
BioMurray Cutforth is a research scientist on the PSAAP III project at the Center for Turbulence Research. He works with Professor Eric Darve on uncertainty quantification of laser-ignited turbulent combustion. During his PhD at the University of Cambridge, Murray studied sharp interface methods for multi-material flow, and subsequently has worked on applications of machine learning in medical image and text analysis in industry.
-
Mark Cutkosky
Fletcher Jones Professor in the School of Engineering
BioCutkosky applies analyses, simulations, and experiments to the design and control of robotic hands, tactile sensors, and devices for human/computer interaction. In manufacturing, his work focuses on design tools for rapid prototyping.
-
Martha S. Cyert
Dr. Nancy Chang Professor
Current Research and Scholarly InterestsThe Cyert lab is identifying signaling networks for calcineurin, the conserved Ca2+/calmodulin-dependent phosphatase, and target of immunosuppressants FK506 and cyclosporin A, in yeast and mammals. Cell biological investigations of target dephosphorylation reveal calcineurin’s many physiological functions. Roles for short linear peptide motifs, or SLiMs, in substrate recognition, network evolution, and regulation of calcineurin activity are being studied.
-
Agnieszka Czechowicz, MD, PhD
Assistant Professor of Pediatrics (Stem Cell Transplantation)
Current Research and Scholarly InterestsDr. Czechowicz’s research is aimed at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. This work can be applied across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome-augmentation and cancer.