Stanford University
Showing 1-10 of 17 Results
-
Robert Wagoner
Professor of Physics, Emeritus
Current Research and Scholarly InterestsProbes (accretion disks, ...) of black holes, sources and detectors of gravitational radiation, theories of gravitation, anthropic cosmological principle.
-
Virginia Walbot
Professor of Biology, Emerita
Current Research and Scholarly InterestsOur current focus is on maize anther development to understand how cell fate is specified. We discovered that hypoxia triggers specification of the archesporial (pre-meiotic) cells, and that these cells secrete a small protein MAC1 that patterns the adjacent soma to differentiate as endothecial and secondary parietal cell types. We also discovered a novel class of small RNA: 21-nt and 24-nt phasiRNAs that are exceptionally abundant in anthers and exhibit strict spatiotemporal dynamics.
-
Guenther Walther
John A. Overdeck Professor
BioGuenther Walther studied mathematics, economics, and computer science at the University of Karlsruhe in Germany and received his Ph.D. in Statistics from UC Berkeley in 1994.
His research has focused on statistical methodology for detection problems, shape-restricted inference, and mixture analysis, and on statistical problems in astrophysics and in flow cytometry.
He received a Terman fellowship, a NSF CAREER award, and the Distinguished Teaching Award of the Dean of Humanities and Sciences at Stanford. He has served on the editorial boards of the Journal of Computational and Graphical Statistics, the Journal of the Royal Statistical Society, the Annals of Statistics, the Annals of Applied Statistics, and Statistical Science. He was program co-chair of the 2006 Annual Meeting of the Institute of Mathematical Statistics and served on the executive committee of IMS from 1998 to 2012. -
Li Wang
Assistant Professor of Biology
BioLi is a developmental neurobiologist with interdisciplinary training in genomics, proteomics, and neuroscience. His research seeks to understand how cellular and synaptic diversity arises during human brain development and evolution, and how these same mechanisms may be hijacked in diseases such as brain cancer.
Li received his B.S. from Fudan University in China, where he studied synaptic plasticity during critical periods in the visual cortex. During his Ph.D. with Dr. Huda Zoghbi at Baylor College of Medicine, Li explored the molecular basis of neurodevelopmental disorders, uncovering how mutations in key proteins like SHANK3 and MeCP2 disrupt neural function. His postdoctoral work with Dr. Arnold Kriegstein at UCSF expanded this focus to human brain development at single-cell resolution. He generated multi-omic atlases and cross-species proteomic maps that revealed novel progenitor cell types and human-specific synapse maturation programs, with implications for cognition and brain cancer. Li directs the Human Brain Development Lab (https://www.liwanglab.org) at Stanford University, where he continues to investigate human brain development with a focus on stem cell lineages and synaptic diversity.
Li has received many awards, including the NIH K99/R00 Pathway to Independence Award, the Trainee Professional Development Award from the Society for Neuroscience, the Keystone Symposia Scholarship, the Dennis Weatherstone Predoctoral Fellowship from Autism Speaks, and the Dean’s Award for Excellence from Baylor College of Medicine. -
Dr. Zhiyong Wang
Professor (By Courtesy), Biology
BioDr. Wang is the acting director of the Department of Plant Biology, Carnegie Institution for Science, and a professor by courtesy of the Department of Biology, Stanford University. He is currently an associate editor of Molecular Cellular Proteomics, and editorial board member of Molecular Plant. He is a Fellow of the American Association for the Advancement of Science (AAAS) and recipient of the Humboldt Research Prize.
Dr. Wang obtained his Ph.D. in 1998 from UCLA, where he cloned the plant circadian clock gene CCA1. He did his postdoctoral research at the Salk Institute, where he studied the brassinosteroid signaling mechanism mediated by the BRI1 receptor kinase. Since joining Carnegie in 2001, his research has illustrated the receptor kinase signaling pathway that links the BRI1 receptor kinase to the BZR1 transcription factor and brassinosteroid-responsive genes in the Arabidopsis genome. He further demonstrated how the steroid signaling pathway integrates at the molecular level with other hormonal pathways, light signaling pathways, nutrient-sensing pathways, immunity pathways, and the circadian clock, to coordinately regulate plant growth and development. His lab uses combinations of genomic and proteomic approaches to understand how cellular signals are transduced and integrated through posttranslational modifications (e.g. phosphorylation and O-Glycosylation) and protein-protein interactions. His studies are elucidating the molecular mechanisms that control plant growth and mediate responses to environmental changes. -
Ward Watt
Professor, Biology
Current Research and Scholarly InterestsEvolutionary adaptive mechanisms, molecules to ecosystems
-
Robert Waymouth
Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering
BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.
Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.
Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.
The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines. -
Risa Wechsler
Director, Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Humanities and Sciences Professor and Professor of Physics and of Particle Physics and Astrophysics
BioRisa Wechsler is the Humanities and Sciences Professor and the Director of the Kavli Institute of Particle Astrophysics and Cosmology. She is also Professor of Physics and Professor of Particle Physics & Astrophysics at SLAC National Laboratory, Director of the Center for Decoding the Universe, and an Associate Director at Stanford Data Science. She is a cosmologist whose work investigates some of the most profound questions about our universe — how it formed, what it is made of, how it is structured, and what its future holds.
Her research focuses on understanding the evolution of galaxies, the large-scale structure of the universe, and the nature of dark matter and dark energy. She uses large numerical simulations, theoretical models, and the largest observed maps of the universe to explore these forces that shape the cosmos. Her recent work also investigates the formation and cosmological context of the Milky Way and probes dark matter through small-scale cosmic structure, and explores how data science and AI/ML can drive new understanding. Wechsler has played key leadership roles in major international collaborations including the Dark Energy Survey, Dark Energy Spectroscopic Instrument, and Rubin Observatory's Legacy Survey of Space and time, a decade-long survey that will reveal the dynamic universe in unprecedented detail. She is recently involved in the Via Survey, which will map the Milky Way at high precision to probe dark matter physics in new ways.
Wechsler is an elected member of the National Academy of Sciences and the American Academy of Arts and Sciences and a Fellow of the American Physical Society and the American Association for the Advancement of Science.