Stanford University


Showing 1-5 of 5 Results

  • Emily Alsentzer

    Emily Alsentzer

    Assistant Professor of Biomedical Data Science and, by courtesy, of Computer Science

    BioDr. Emily Alsentzer is an Assistant Professor in Biomedical Data Science and, by courtesy, Computer Science at Stanford University. Her research leverages machine learning (ML) and natural language processing (NLP) to augment clinical decision-making and broaden access to high quality healthcare. She focuses on integrating medical expertise into ML models to ensure responsible deployment in clinical workflows. Dr. Alsentzer completed a postdoctoral fellowship at Brigham and Women’s Hospital where she worked to deploy ML models within the Mass General Brigham healthcare system. She received her PhD from the Health Sciences and Technology program at MIT and Harvard Medical School and holds degrees in computer science (BS) and biomedical informatics (MS) from Stanford University. She has served as General Chair for the Machine Learning for Health Symposium and founding organizer for SAIL and the Conference on Health, Inference, and Learning (CHIL).

  • Daniel Bloch

    Daniel Bloch

    Professor (Research) of Biomedical Data Science (BDS), Emeritus

    BioI received my PhD. in Mathematical Statistics in 1967. I joined the research community at the Stanford University School of Medicine, Division of Immunology & Rheumatology, in 1984 as head statistician directing the biostatistics consulting and analytic support of the Arthritis Rheumatism Aging Medical Information System (ARAMIS) and Multipurpose Arthritis Center (MAC) grant-related research programs. In 1993 I was appointed Associate Professor with a joint appointment in the Departments of Medicine and of Health Research & Policy, and am currently Professor of Biostatistics at Stanford University, emeritus since 2007. My contributions to the statistics literature span numerous fields, including methods of sample size estimation, efficiency and bias of estimators, research methods for kappa statistics, non-parametric classification methods and methods of assessing multi-parameter endpoints. I have over 200 peer-reviewed publications. I have been directly involved with the development of numerous criteria rules for classification of diseases and with establishing guidelines for clinical trial research and in proposing responder criteria for osteoarthritis drugs. Since 1987, I have been a consultant on an ad hoc basis to pharmaceutical and biotechnical firms, including both start-up and established companies. I have extensive experience with devices, drugs and biologics and have participated in all aspects of applying statistics to implement investigational plans; e.g.: for protocol development, design of trials, database design. I’ve been a member of the FDA Statistical Advisors Panel, the statistical member on numerous data safety monitoring boards, and frequently represent companies at meetings with the FDA

  • Philip W. Lavori

    Philip W. Lavori

    Professor of Biomedical Data Science, Emeritus

    Current Research and Scholarly InterestsBiostatistics, clinical trials, longitudinal studies, casual inference from observational studies, genetic tissue banking, informed consent. Trial designs for dynamic (adaptive) treatment regimes, psychiatric research, cancer.